BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34403347)

  • 1. In Vivo Biomechanical Assessment of a Novel Handle-Based Wheelchair Drive.
    Puchinger M; Stefanek P; Gstaltner K; Pandy MG; Gfohler M
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1669-1678. PubMed ID: 34403347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrist Kinematics and Kinetics during Wheelchair Propulsion with a Novel Handle-based Propulsion Mechanism.
    Kurup NBR; Puchinger M; Keck T; Gfoehler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2146-2149. PubMed ID: 30440828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study.
    Babu Rajendra Kurup N; Puchinger M; Gföhler M
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):55-63. PubMed ID: 30398368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
    Jayaraman C; Beck CL; Sosnoff JJ
    J Biomech; 2015 Nov; 48(14):3937-44. PubMed ID: 26472307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary muscle activity analysis: Handle based and push-rim wheelchair propulsion.
    Babu Rajendra Kurup N; Puchinger M; Gfoehler M
    J Biomech; 2019 May; 89():119-122. PubMed ID: 31053474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of wheelchair configurations on shoulder movements, push rim kinetics and upper limb kinematics while negotiating a speed bump.
    Gawande M; Wang P; Arnold G; Nasir S; Abboud R; Wang W
    Ergonomics; 2022 Jul; 65(7):987-998. PubMed ID: 34842063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia.
    Haubert LL; Mulroy SJ; Requejo PS; Maneekobkunwong S; Gronley JK; Rankin JW; Rodriguez D; Hong K
    J Spinal Cord Med; 2020 Sep; 43(5):594-606. PubMed ID: 30768378
    [No Abstract]   [Full Text] [Related]  

  • 12. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the shoulder net joint moment during manual wheelchair propulsion using four functional axes.
    Russell IM; Wagner EV; Requejo PS; Mulroy S; Flashner H; McNitt-Gray JL
    J Electromyogr Kinesiol; 2022 Feb; 62():102340. PubMed ID: 31387793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking wheelchair kinetics to glenohumeral joint demand during everyday accessibility activities.
    Holloway CS; Symonds A; Suzuki T; Gall A; Smitham P; Taylor S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2478-81. PubMed ID: 26736796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of muscle activity during hand rim and lever wheelchair propulsion over flat terrain.
    Błażkiewicz M; Wiszomirska I; Fiok K; Mróz A; Kosmol A; Mikicin M; Molik B; Marszałek J
    Acta Bioeng Biomech; 2019; 21(3):67-74. PubMed ID: 31798014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.