BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34403347)

  • 21. Glenohumeral joint dynamics and shoulder muscle activity during geared manual wheelchair propulsion on carpeted floor in individuals with spinal cord injury.
    Jahanian O; Schnorenberg AJ; Muqeet V; Hsiao-Wecksler ET; Slavens BA
    J Electromyogr Kinesiol; 2022 Feb; 62():102318. PubMed ID: 31178393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pushrim forces and joint kinetics during wheelchair propulsion.
    Robertson RN; Boninger ML; Cooper RA; Shimada SD
    Arch Phys Med Rehabil; 1996 Sep; 77(9):856-64. PubMed ID: 8822674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in shoulder kinematics are associated with shoulder pain during wheelchair propulsion sprints.
    Briley SJ; Vegter RJK; Goosey-Tolfrey VL; Mason BS
    Scand J Med Sci Sports; 2022 Aug; 32(8):1213-1223. PubMed ID: 35620900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia.
    Arnet U; van Drongelen S; Scheel-Sailer A; van der Woude LH; Veeger DH
    J Rehabil Med; 2012 Mar; 44(3):222-8. PubMed ID: 22367531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upper-limb joint kinetics expression during wheelchair propulsion.
    Morrow MM; Hurd WJ; Kaufman KR; An KN
    J Rehabil Res Dev; 2009; 46(7):939-44. PubMed ID: 20104416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion.
    Hybois S; Puchaud P; Bourgain M; Lombart A; Bascou J; Lavaste F; Fodé P; Pillet H; Sauret C
    Med Eng Phys; 2019 Jul; 69():153-160. PubMed ID: 31221514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploration of shoulder load during hand-rim wheelchair start-up with and without power-assisted propulsion in experienced wheelchair users.
    Kloosterman MG; Buurke JH; Schaake L; Van der Woude LH; Rietman JS
    Clin Biomech (Bristol, Avon); 2016 May; 34():1-6. PubMed ID: 26999794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hand-rim biomechanics during geared manual wheelchair propulsion over different ground conditions in individuals with spinal cord injury.
    Jahanian O; Gaglio A; Cho CC; Muqeet V; Smith R; Morrow MMB; Hsiao-Wecksler ET; Slavens BA
    J Biomech; 2022 Sep; 142():111235. PubMed ID: 35947887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shoulder joint kinetics during the push phase of wheelchair propulsion.
    Kulig K; Rao SS; Mulroy SJ; Newsam CJ; Gronley JK; Bontrager EL; Perry J
    Clin Orthop Relat Res; 1998 Sep; (354):132-43. PubMed ID: 9755772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Influence of Sex on Upper Extremity Joint Dynamics in Pediatric Manual Wheelchair Users With Spinal Cord Injury.
    Hanks MM; Leonardis JM; Schnorenberg AJ; Krzak JJ; Graf A; Vogel LC; Harris GF; Slavens BA
    Top Spinal Cord Inj Rehabil; 2021; 27(3):26-37. PubMed ID: 34456544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Systematic Methodology to Analyze the Impact of Hand-Rim Wheelchair Propulsion on the Upper Limb.
    Larraga-García B; Lozano-Berrio V; Gutiérrez Á; Gil-Agudo Á; Del-Ama AJ
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31731458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users.
    Rodgers MM; McQuade KJ; Rasch EK; Keyser RE; Finley MA
    J Rehabil Res Dev; 2003; 40(1):27-37. PubMed ID: 15150718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction and evaluation of a model for wheelchair propulsion in an individual with tetraplegia.
    Odle B; Reinbolt J; Forrest G; Dyson-Hudson T
    Med Biol Eng Comput; 2019 Feb; 57(2):519-532. PubMed ID: 30255235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of applied forces in handrim wheelchair propulsion.
    Lin CJ; Lin PC; Guo LY; Su FC
    J Biomech; 2011 Feb; 44(3):455-60. PubMed ID: 20980008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shoulder model validation and joint contact forces during wheelchair activities.
    Morrow MM; Kaufman KR; An KN
    J Biomech; 2010 Sep; 43(13):2487-92. PubMed ID: 20840833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biomechanics of wheelchair propulsion in individuals with and without upper-limb impairment.
    Finley MA; Rasch EK; Keyser RE; Rodgers MM
    J Rehabil Res Dev; 2004 May; 41(3B):385-95. PubMed ID: 15543456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility.
    Slavens BA; Jahanian O; Schnorenberg AJ; Hsiao-Wecksler ET
    Med Eng Phys; 2019 Aug; 70():1-8. PubMed ID: 31285137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.