These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34403347)

  • 41. Upper extremity wheelchair kinematics in children with spinal cord injury.
    Slavens BA; Graf A; Krzak J; Vogel L; Harris GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8158-61. PubMed ID: 22256235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variability of peak shoulder force during wheelchair propulsion in manual wheelchair users with and without shoulder pain.
    Moon Y; Jayaraman C; Hsu IM; Rice IM; Hsiao-Wecksler ET; Sosnoff JJ
    Clin Biomech (Bristol, Avon); 2013; 28(9-10):967-72. PubMed ID: 24210512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Upper limb joint kinetics during manual wheelchair propulsion in patients with different levels of spinal cord injury.
    Gil-Agudo A; Del Ama-Espinosa A; Pérez-Rizo E; Pérez-Nombela S; Pablo Rodríguez-Rodríguez L
    J Biomech; 2010 Sep; 43(13):2508-15. PubMed ID: 20541760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reliability and validity of the Microsoft Kinect for assessment of manual wheelchair propulsion.
    Milgrom R; Foreman M; Standeven J; Engsberg JR; Morgan KA
    J Rehabil Res Dev; 2016; 53(6):901-918. PubMed ID: 28475198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relationship Between Shoulder Pain and Joint Reaction Forces and Muscle Moments During 2 Speeds of Wheelchair Propulsion.
    Chang LS; Ke XW; Limroongreungrat W; Wang YT
    J Appl Biomech; 2022 Dec; 38(6):404-411. PubMed ID: 36370702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic Cost and Mechanical Efficiency of a Novel Handle-Based Device for Wheelchair Propulsion.
    Puchinger M; Kurup N; Gstaltner K; Pandy MG; Gföhler M
    J Rehabil Med; 2022 Nov; 54():jrm00346. PubMed ID: 36264132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new method to quantify demand on the upper extremity during manual wheelchair propulsion.
    Sabick MB; Kotajarvi BR; An KN
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1151-9. PubMed ID: 15241767
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ
    Clin Biomech (Bristol, Avon); 2018 May; 54():54-61. PubMed ID: 29554550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility.
    Schnorenberg AJ; Slavens BA; Wang M; Vogel LC; Smith PA; Harris GF
    J Biomech; 2014 Jan; 47(1):269-76. PubMed ID: 24309622
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
    Rankin JW; Richter WM; Neptune RR
    J Biomech; 2011 Apr; 44(7):1246-52. PubMed ID: 21397232
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shoulder demands in manual wheelchair users across a spectrum of activities.
    Morrow MM; Hurd WJ; Kaufman KR; An KN
    J Electromyogr Kinesiol; 2010 Feb; 20(1):61-7. PubMed ID: 19269194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML; Baldwin M; Cooper RA; Koontz A; Chan L
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in propulsion technique and shoulder complex loading following low-intensity wheelchair practice in novices.
    Leving MT; Vegter RJK; de Vries WHK; de Groot S; van der Woude LHV
    PLoS One; 2018; 13(11):e0207291. PubMed ID: 30412627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coordination patterns of shoulder muscles during level-ground and incline wheelchair propulsion.
    Qi L; Wakeling J; Grange S; Ferguson-Pell M
    J Rehabil Res Dev; 2013; 50(5):651-62. PubMed ID: 24013913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three dimensional upper extremity motion during manual wheelchair propulsion in men with different levels of spinal cord injury.
    Newsam CJ; Rao SS; Mulroy SJ; Gronley JK; Bontrager EL; Perry J
    Gait Posture; 1999 Dec; 10(3):223-32. PubMed ID: 10567754
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs.
    Briley SJ; Vegter RJK; Tolfrey VL; Mason BS
    J Biomech; 2020 May; 104():109725. PubMed ID: 32173030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.