These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 34403477)
1. POSTAR3: an updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Zhao W; Zhang S; Zhu Y; Xi X; Bao P; Ma Z; Kapral TH; Chen S; Zagrovic B; Yang YT; Lu ZJ Nucleic Acids Res; 2022 Jan; 50(D1):D287-D294. PubMed ID: 34403477 [TBL] [Abstract][Full Text] [Related]
2. POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Hu B; Yang YT; Huang Y; Zhu Y; Lu ZJ Nucleic Acids Res; 2017 Jan; 45(D1):D104-D114. PubMed ID: 28053162 [TBL] [Abstract][Full Text] [Related]
3. RMVar: an updated database of functional variants involved in RNA modifications. Luo X; Li H; Liang J; Zhao Q; Xie Y; Ren J; Zuo Z Nucleic Acids Res; 2021 Jan; 49(D1):D1405-D1412. PubMed ID: 33021671 [TBL] [Abstract][Full Text] [Related]
4. CLIPdb: a CLIP-seq database for protein-RNA interactions. Yang YC; Di C; Hu B; Zhou M; Liu Y; Song N; Li Y; Umetsu J; Lu ZJ BMC Genomics; 2015 Feb; 16(1):51. PubMed ID: 25652745 [TBL] [Abstract][Full Text] [Related]
5. POSTAR2: deciphering the post-transcriptional regulatory logics. Zhu Y; Xu G; Yang YT; Xu Z; Chen X; Shi B; Xie D; Lu ZJ; Wang P Nucleic Acids Res; 2019 Jan; 47(D1):D203-D211. PubMed ID: 30239819 [TBL] [Abstract][Full Text] [Related]
6. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Mao F; Xiao L; Li X; Liang J; Teng H; Cai W; Sun ZS Nucleic Acids Res; 2016 Jan; 44(D1):D154-63. PubMed ID: 26635394 [TBL] [Abstract][Full Text] [Related]
7. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Li JH; Liu S; Zhou H; Qu LH; Yang JH Nucleic Acids Res; 2014 Jan; 42(Database issue):D92-7. PubMed ID: 24297251 [TBL] [Abstract][Full Text] [Related]
8. Large-Scale Profiling of RBP-circRNA Interactions from Public CLIP-Seq Datasets. Zhang M; Wang T; Xiao G; Xie Y Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31947823 [TBL] [Abstract][Full Text] [Related]
9. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles. Budak G; Srivastava R; Janga SC RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542 [TBL] [Abstract][Full Text] [Related]
10. RBPMetaDB: a comprehensive annotation of mouse RNA-Seq datasets with perturbations of RNA-binding proteins. Li J; Deng SP; Vieira J; Thomas J; Costa V; Tseng CS; Ivankovic F; Ciccodicola A; Yu P Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29931156 [TBL] [Abstract][Full Text] [Related]
11. Human protein-RNA interaction network is highly stable across mammals. Ramakrishnan A; Janga SC BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461 [TBL] [Abstract][Full Text] [Related]
12. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. Dudekula DB; Panda AC; Grammatikakis I; De S; Abdelmohsen K; Gorospe M RNA Biol; 2016; 13(1):34-42. PubMed ID: 26669964 [TBL] [Abstract][Full Text] [Related]
13. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Yang JH; Li JH; Shao P; Zhou H; Chen YQ; Qu LH Nucleic Acids Res; 2011 Jan; 39(Database issue):D202-9. PubMed ID: 21037263 [TBL] [Abstract][Full Text] [Related]
14. LincSNP 3.0: an updated database for linking functional variants to human long non-coding RNAs, circular RNAs and their regulatory elements. Gao Y; Li X; Shang S; Guo S; Wang P; Sun D; Gan J; Sun J; Zhang Y; Wang J; Wang X; Li X; Zhang Y; Ning S Nucleic Acids Res; 2021 Jan; 49(D1):D1244-D1250. PubMed ID: 33219661 [TBL] [Abstract][Full Text] [Related]
15. Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data. Gao Y; Shang S; Guo S; Li X; Zhou H; Liu H; Sun Y; Wang J; Wang P; Zhi H; Li X; Ning S; Zhang Y Nucleic Acids Res; 2021 Jan; 49(D1):D1251-D1258. PubMed ID: 33219685 [TBL] [Abstract][Full Text] [Related]
16. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks. Zhang K; Pan X; Yang Y; Shen HB RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Okholm TLH; Sathe S; Park SS; Kamstrup AB; Rasmussen AM; Shankar A; Chua ZM; Fristrup N; Nielsen MM; Vang S; Dyrskjøt L; Aigner S; Damgaard CK; Yeo GW; Pedersen JS Genome Med; 2020 Dec; 12(1):112. PubMed ID: 33287884 [TBL] [Abstract][Full Text] [Related]
18. PTRE-seq reveals mechanism and interactions of RNA binding proteins and miRNAs. Cottrell KA; Chaudhari HG; Cohen BA; Djuranovic S Nat Commun; 2018 Jan; 9(1):301. PubMed ID: 29352242 [TBL] [Abstract][Full Text] [Related]
19. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data. Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760 [TBL] [Abstract][Full Text] [Related]