These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34403582)

  • 1. Synthetic Macrocycle Nanopore for Potassium-Selective Transmembrane Transport.
    Qiao D; Joshi H; Zhu H; Wang F; Xu Y; Gao J; Huang F; Aksimentiev A; Feng J
    J Am Chem Soc; 2021 Oct; 143(39):15975-15983. PubMed ID: 34403582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic potassium-selective nanopores.
    Acar ET; Buchsbaum SF; Combs C; Fornasiero F; Siwy ZS
    Sci Adv; 2019 Feb; 5(2):eaav2568. PubMed ID: 30783627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological nanopores for sensing applications.
    Zhang M; Chen C; Zhang Y; Geng J
    Proteins; 2022 Oct; 90(10):1786-1799. PubMed ID: 35092317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Free Expression of
    Fujita S; Kawamura I; Kawano R
    ACS Nano; 2023 Feb; 17(4):3358-3367. PubMed ID: 36731872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
    Lynch CI; Rao S; Sansom MSP
    Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Transport through a Biomimetic DNA Channel on Live Cell Membranes.
    Lv C; Gu X; Li H; Zhao Y; Yang D; Yu W; Han D; Li J; Tan W
    ACS Nano; 2020 Nov; 14(11):14616-14626. PubMed ID: 32897687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
    Jain T; Rasera BC; Guerrero RJ; Boutilier MS; O'Hern SC; Idrobo JC; Karnik R
    Nat Nanotechnol; 2015 Dec; 10(12):1053-7. PubMed ID: 26436566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Enhancement in Solid-State Nanopores Depends on Three-Dimensional DNA Structure.
    Wang V; Ermann N; Keyser UF
    Nano Lett; 2019 Aug; 19(8):5661-5666. PubMed ID: 31313927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.
    De Riccardis F; Izzo I; Montesarchio D; Tecilla P
    Acc Chem Res; 2013 Dec; 46(12):2781-90. PubMed ID: 23534613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of Small-Molecule Transport through Synthetic Nanopores.
    Diederichs T; Ahmad K; Burns JR; Nguyen QH; Siwy ZS; Tornow M; Coveney PV; Tampé R; Howorka S
    ACS Nano; 2021 Oct; 15(10):16194-16206. PubMed ID: 34596387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
    Shankla M; Aksimentiev A
    J Phys Chem B; 2017 Apr; 121(15):3724-3733. PubMed ID: 28009170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier.
    Trick JL; Song C; Wallace EJ; Sansom MS
    ACS Nano; 2017 Feb; 11(2):1840-1847. PubMed ID: 28141923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic selectivity of nystatin A1 confined in nanoporous track-etched polymer membrane.
    Balme S; Thiele D; Kraszewski S; Picaud F; Janot JM; Déjardin P
    IET Nanobiotechnol; 2014 Sep; 8(3):138-42. PubMed ID: 25082221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na(+) and K(+).
    He Z; Zhou J; Lu X; Corry B
    ACS Nano; 2013 Nov; 7(11):10148-57. PubMed ID: 24151957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore sensors: from hybrid to abiotic systems.
    Kocer A; Tauk L; Déjardin P
    Biosens Bioelectron; 2012; 38(1):1-10. PubMed ID: 22749726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore.
    Khan MS; Dosoky NS; Berdiev BK; Williams JD
    Eur Biophys J; 2016 Dec; 45(8):843-852. PubMed ID: 27480285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.