These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 34403868)
21. A Recurrent Neural Network Approach for Constrained Distributed Fuzzy Convex Optimization. Liu J; Liao X; Dong JS IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9743-9757. PubMed ID: 37022084 [TBL] [Abstract][Full Text] [Related]
22. A neurodynamic approach to convex optimization problems with general constraint. Qin S; Liu Y; Xue X; Wang F Neural Netw; 2016 Dec; 84():113-124. PubMed ID: 27718390 [TBL] [Abstract][Full Text] [Related]
23. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. Cheng L; Hou ZG; Lin Y; Tan M; Zhang WC; Wu FX IEEE Trans Neural Netw; 2011 May; 22(5):714-26. PubMed ID: 21427022 [TBL] [Abstract][Full Text] [Related]
24. A nonfeasible gradient projection recurrent neural network for equality-constrained optimization problems. Barbarosou MP; Maratos NG IEEE Trans Neural Netw; 2008 Oct; 19(10):1665-77. PubMed ID: 18842472 [TBL] [Abstract][Full Text] [Related]
25. A non-penalty recurrent neural network for solving a class of constrained optimization problems. Hosseini A Neural Netw; 2016 Jan; 73():10-25. PubMed ID: 26519931 [TBL] [Abstract][Full Text] [Related]
26. Neural network for solving convex quadratic bilevel programming problems. He X; Li C; Huang T; Li C Neural Netw; 2014 Mar; 51():17-25. PubMed ID: 24333480 [TBL] [Abstract][Full Text] [Related]
27. A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. Xia Y; Feng G; Wang J IEEE Trans Neural Netw; 2008 Aug; 19(8):1340-53. PubMed ID: 18701366 [TBL] [Abstract][Full Text] [Related]
28. Smoothing inertial neurodynamic approach for sparse signal reconstruction via L Zhao Y; Liao X; He X; Tang R; Deng W Neural Netw; 2021 Aug; 140():100-112. PubMed ID: 33752140 [TBL] [Abstract][Full Text] [Related]
29. Non-Lipschitz lp-regularization and box constrained model for image restoration. Chen X; Ng MK; Zhang C IEEE Trans Image Process; 2012 Dec; 21(12):4709-21. PubMed ID: 23008251 [TBL] [Abstract][Full Text] [Related]
30. A generalized neural network for distributed nonsmooth optimization with inequality constraint. Jia W; Qin S; Xue X Neural Netw; 2019 Nov; 119():46-56. PubMed ID: 31376637 [TBL] [Abstract][Full Text] [Related]
31. A collective neurodynamic optimization approach to bound-constrained nonconvex optimization. Yan Z; Wang J; Li G Neural Netw; 2014 Jul; 55():20-9. PubMed ID: 24705545 [TBL] [Abstract][Full Text] [Related]
32. A collective neurodynamic penalty approach to nonconvex distributed constrained optimization. Jia W; Huang T; Qin S Neural Netw; 2024 Mar; 171():145-158. PubMed ID: 38091759 [TBL] [Abstract][Full Text] [Related]
33. A one-layer recurrent neural network for constrained nonsmooth optimization. Liu Q; Wang J IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1323-33. PubMed ID: 21536534 [TBL] [Abstract][Full Text] [Related]
34. A one-layer recurrent neural network for constrained nonsmooth invex optimization. Li G; Yan Z; Wang J Neural Netw; 2014 Feb; 50():79-89. PubMed ID: 24292024 [TBL] [Abstract][Full Text] [Related]
35. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. Liang XB; Wang J IEEE Trans Neural Netw; 2000; 11(6):1251-62. PubMed ID: 18249851 [TBL] [Abstract][Full Text] [Related]
36. A Novel Multiagent Neurodynamic Approach to Constrained Distributed Convex Optimization. Ma L; Bian W IEEE Trans Cybern; 2021 Mar; 51(3):1322-1333. PubMed ID: 30892259 [TBL] [Abstract][Full Text] [Related]
37. Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm. Lu C; Tang J; Yan S; Lin Z IEEE Trans Image Process; 2016 Feb; 25(2):829-39. PubMed ID: 26841392 [TBL] [Abstract][Full Text] [Related]
38. Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces. Geiersbach C; Scarinci T Comput Optim Appl; 2021; 78(3):705-740. PubMed ID: 33707813 [TBL] [Abstract][Full Text] [Related]