These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34404024)

  • 1. Tensile and compressive strain evolutions of bovine compact bone under four-point bending fatigue loading.
    Meng X; Qin Q; Qu C
    J Mech Behav Biomed Mater; 2021 Nov; 123():104774. PubMed ID: 34404024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage type and strain mode associations in human compact bone bending fatigue.
    Boyce TM; Fyhrie DP; Glotkowski MC; Radin EL; Schaffler MB
    J Orthop Res; 1998 May; 16(3):322-9. PubMed ID: 9671927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range.
    Carter DR; Caler WE; Spengler DM; Frankel VH
    Acta Orthop Scand; 1981 Oct; 52(5):481-90. PubMed ID: 7331784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Bimodular Bone Specimen under Four-Point Bending Fatigue Loading.
    Yan Y; Meng X; Qu C
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone.
    Uniyal P; Sharma A; Kumar N
    J Biomech; 2022 Oct; 143():111274. PubMed ID: 36049386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and morphological effects of strain rate on fatigue of compact bone.
    Schaffler MB; Radin EL; Burr DB
    Bone; 1989; 10(3):207-14. PubMed ID: 2803855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of single bovine trabeculae are unaffected by strain rate.
    Szabó ME; Taylor M; Thurner PJ
    J Biomech; 2011 Mar; 44(5):962-7. PubMed ID: 21333291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the 0.2%-Strain-Offset Approach Appropriate for Calculating the Yield Stress of Cortical Bone?
    Zhang G; Luo J; Zheng G; Bai Z; Cao L; Mao H
    Ann Biomed Eng; 2021 Jul; 49(7):1747-1760. PubMed ID: 33479788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading.
    Lin X; Zhao J; Gao L; Zhang C; Gao H
    J Mech Behav Biomed Mater; 2020 Dec; 112():104003. PubMed ID: 32823002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic error in mechanical measures of damage during four-point bending fatigue of cortical bone.
    Landrigan MD; Roeder RK
    J Biomech; 2009 Jun; 42(9):1212-7. PubMed ID: 19394019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact bone fatigue damage: a microscopic examination.
    Carter DR; Hayes WC
    Clin Orthop Relat Res; 1977; (127):265-74. PubMed ID: 912990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are tensile and compressive Young's moduli of compact bone different?
    Barak MM; Currey JD; Weiner S; Shahar R
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):51-60. PubMed ID: 19627807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. European Society of Biomechanics S.M. Perren Award 2016: A statistical damage model for bone tissue based on distinct compressive and tensile cracks.
    Zysset PK; Schwiedrzik J; Wolfram U
    J Biomech; 2016 Nov; 49(15):3616-3625. PubMed ID: 27829493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus.
    Keaveny TM; Wachtel EF; Ford CM; Hayes WC
    J Biomech; 1994 Sep; 27(9):1137-46. PubMed ID: 7929463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yield strain behavior of trabecular bone.
    Kopperdahl DL; Keaveny TM
    J Biomech; 1998 Jul; 31(7):601-8. PubMed ID: 9796682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.