These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34404207)
1. Inducible Population Quality Control of Engineered Cao Y; Tian R; Lv X; Li J; Liu L; Du G; Chen J; Liu Y ACS Synth Biol; 2021 Sep; 10(9):2197-2209. PubMed ID: 34404207 [TBL] [Abstract][Full Text] [Related]
2. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis. Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807 [TBL] [Abstract][Full Text] [Related]
3. [Development of biosensors highly responsive to Sun J; Cao Y; Lü X; Li J; Liu L; DU G; Chen J; Liu Y Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(5):2502-2516. PubMed ID: 37401606 [No Abstract] [Full Text] [Related]
4. Pathway Engineering of Bacillus subtilis for Enhanced N-Acetylneuraminic Acid Production via Whole-Cell Biocatalysis. Zhao L; Tian R; Shen Q; Liu Y; Liu L; Li J; Du G Biotechnol J; 2019 Jul; 14(7):e1800682. PubMed ID: 30925011 [TBL] [Abstract][Full Text] [Related]
5. Engineering of Synthetic Multiplexed Pathways for High-Level Zhang X; Wang C; Lv X; Liu L; Li J; Du G; Wang M; Liu Y J Agric Food Chem; 2021 Dec; 69(49):14868-14877. PubMed ID: 34851104 [No Abstract] [Full Text] [Related]
6. Development and optimization of N-acetylneuraminic acid biosensors in Bacillus subtilis. Zhang X; Cao Y; Liu Y; Liu L; Li J; Du G; Chen J Biotechnol Appl Biochem; 2020 Jul; 67(4):693-705. PubMed ID: 32400021 [TBL] [Abstract][Full Text] [Related]
7. Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Tian R; Liu Y; Cao Y; Zhang Z; Li J; Liu L; Du G; Chen J Nat Commun; 2020 Oct; 11(1):5078. PubMed ID: 33033266 [TBL] [Abstract][Full Text] [Related]
8. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Wu Q; Zhi Y; Xu Y Metab Eng; 2019 Mar; 52():87-97. PubMed ID: 30453038 [TBL] [Abstract][Full Text] [Related]
9. Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Zhang X; Liu Y; Liu L; Li J; Du G; Chen J Biotechnol Adv; 2019; 37(5):787-800. PubMed ID: 31028787 [TBL] [Abstract][Full Text] [Related]
10. Metabolic Engineering of Liu C; Lv X; Li J; Liu L; Du G; Liu Y J Agric Food Chem; 2022 Dec; 70(50):15859-15868. PubMed ID: 36475707 [No Abstract] [Full Text] [Related]
11. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Jiao S; Li X; Yu H; Yang H; Li X; Shen Z Biotechnol Bioeng; 2017 Apr; 114(4):832-842. PubMed ID: 27723092 [TBL] [Abstract][Full Text] [Related]
12. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate. Yang H; Liu Y; Li J; Liu L; Du G; Chen J Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863 [TBL] [Abstract][Full Text] [Related]
13. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Tian R; Liu Y; Chen J; Li J; Liu L; Du G; Chen J Metab Eng; 2019 Sep; 55():131-141. PubMed ID: 31288083 [TBL] [Abstract][Full Text] [Related]
14. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271 [TBL] [Abstract][Full Text] [Related]
15. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis. Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011 [TBL] [Abstract][Full Text] [Related]
16. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. Zhang X; Zhang R; Bao T; Yang T; Xu M; Li H; Xu Z; Rao Z J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1067-76. PubMed ID: 23836140 [TBL] [Abstract][Full Text] [Related]
17. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Kleerebezem M; Bongers R; Rutten G; de Vos WM; Kuipers OP Peptides; 2004 Sep; 25(9):1415-24. PubMed ID: 15374645 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Westbrook AW; Ren X; Oh J; Moo-Young M; Chou CP Metab Eng; 2018 May; 47():401-413. PubMed ID: 29698777 [TBL] [Abstract][Full Text] [Related]
19. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976 [TBL] [Abstract][Full Text] [Related]
20. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Zobel S; Kumpfmüller J; Süssmuth RD; Schweder T Appl Microbiol Biotechnol; 2015 Jan; 99(2):681-91. PubMed ID: 25398283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]