These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34404207)
21. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Li S; Jia X; Wen J Biotechnol Lett; 2012 Dec; 34(12):2253-8. PubMed ID: 22941373 [TBL] [Abstract][Full Text] [Related]
22. Metabolic engineering of Bacillus subtilis for production of D-lactic acid. Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980 [TBL] [Abstract][Full Text] [Related]
23. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558 [TBL] [Abstract][Full Text] [Related]
24. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Kang XM; Cai X; Huang ZH; Liu ZQ; Zheng YG Int J Biol Macromol; 2020 Jan; 143():833-841. PubMed ID: 31765756 [TBL] [Abstract][Full Text] [Related]
25. Cell-free synthesis system-assisted pathway bottleneck diagnosis and engineering in Tian R; Wang M; Shi J; Qin X; Guo H; Jia X; Li J; Liu L; Du G; Chen J; Liu Y Synth Syst Biotechnol; 2020 Sep; 5(3):131-136. PubMed ID: 32637666 [TBL] [Abstract][Full Text] [Related]
26. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814 [TBL] [Abstract][Full Text] [Related]
27. Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis. Guan C; Cui W; Cheng J; Zhou L; Liu Z; Zhou Z Microb Cell Fact; 2016 Apr; 15():66. PubMed ID: 27112779 [TBL] [Abstract][Full Text] [Related]
28. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Li Y; Zhu X; Zhang X; Fu J; Wang Z; Chen T; Zhao X Microb Cell Fact; 2016 Jun; 15():94. PubMed ID: 27260256 [TBL] [Abstract][Full Text] [Related]
29. Optimization of a Jiang T; Li C; Yan Y ACS Synth Biol; 2021 Jan; 10(1):132-144. PubMed ID: 33378169 [TBL] [Abstract][Full Text] [Related]
30. Optimization of amorphadiene synthesis in bacillus subtilis via transcriptional, translational, and media modulation. Zhou K; Zou R; Zhang C; Stephanopoulos G; Too HP Biotechnol Bioeng; 2013 Sep; 110(9):2556-61. PubMed ID: 23483530 [TBL] [Abstract][Full Text] [Related]
31. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Yang P; Wang J; Pang Q; Zhang F; Wang J; Wang Q; Qi Q Metab Eng; 2017 Sep; 43(Pt A):21-28. PubMed ID: 28780284 [TBL] [Abstract][Full Text] [Related]
32. [Auto-inducible expression system based on the SigB-dependent ohrB promoter in Bacillus subtilis]. Panahi R; Vasheghani-Farahani E; Shojaosadati SA; Bambai B Mol Biol (Mosk); 2014; 48(6):970-6. PubMed ID: 25845237 [TBL] [Abstract][Full Text] [Related]
33. High-Level 5-Methyltetrahydrofolate Bioproduction in Yang H; Yang J; Liu C; Lv X; Liu L; Li J; Du G; Chen J; Liu Y J Agric Food Chem; 2022 May; 70(19):5849-5859. PubMed ID: 35521920 [TBL] [Abstract][Full Text] [Related]
34. Engineering Bacillus subtilis for highly efficient production of functional disaccharide lactulose from lactose. Zhang W; Xiong S; Ni D; Huang Z; Ding J; Mu W Int J Biol Macromol; 2024 Jun; 271(Pt 1):132478. PubMed ID: 38772465 [TBL] [Abstract][Full Text] [Related]
35. Metabolic engineering of Bacillus subtilis for high-level production of uridine from glucose. Wang C; Xu J; Ban R Lett Appl Microbiol; 2022 Oct; 75(4):824-830. PubMed ID: 35657030 [TBL] [Abstract][Full Text] [Related]
36. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis. Westbrook AW; Ren X; Moo-Young M; Chou CP Biotechnol Bioeng; 2018 May; 115(5):1239-1252. PubMed ID: 29384194 [TBL] [Abstract][Full Text] [Related]
37. Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168. Jin P; Liang Z; Li H; Chen C; Xue Y; Du Q Carbohydr Polym; 2021 Jan; 251():117115. PubMed ID: 33142650 [TBL] [Abstract][Full Text] [Related]
38. 2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis. Tanimura K; Takashima S; Matsumoto T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2016 Jul; 100(13):5781-9. PubMed ID: 26830100 [TBL] [Abstract][Full Text] [Related]
40. Influence of B. subtilis 3NA mutations in spo0A and abrB on surfactin production in B. subtilis 168. Klausmann P; Lilge L; Aschern M; Hennemann K; Henkel M; Hausmann R; Morabbi Heravi K Microb Cell Fact; 2021 Sep; 20(1):188. PubMed ID: 34565366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]