These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34404230)

  • 1. Sub-spreading events limit the reliable elimination of heterogeneous epidemics.
    Parag KV
    J R Soc Interface; 2021 Aug; 18(181):20210444. PubMed ID: 34404230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exact method for quantifying the reliability of end-of-epidemic declarations in real time.
    Parag KV; Donnelly CA; Jha R; Thompson RN
    PLoS Comput Biol; 2020 Nov; 16(11):e1008478. PubMed ID: 33253158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography.
    Ballard PG; Bean NG; Ross JV
    J Theor Biol; 2016 Mar; 393():170-8. PubMed ID: 26796227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the danger of self-sustained HIV epidemics in heterosexuals by population based phylogenetic cluster analysis.
    Turk T; Bachmann N; Kadelka C; Böni J; Yerly S; Aubert V; Klimkait T; Battegay M; Bernasconi E; Calmy A; Cavassini M; Furrer H; Hoffmann M; Günthard HF; Kouyos RD;
    Elife; 2017 Sep; 6():. PubMed ID: 28895527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Node Heterogeneity in the Coupled Spreading of Epidemics and Awareness.
    Guo Q; Lei Y; Xia C; Guo L; Jiang X; Zheng Z
    PLoS One; 2016; 11(8):e0161037. PubMed ID: 27517715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling epidemic outbreak based on local dynamic infectiousness on complex networks.
    Chen XL; Cai SM; Tang M; Wang W; Zhou T; Hui PM
    Chaos; 2018 Dec; 28(12):123105. PubMed ID: 30599528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk averse reproduction numbers improve resurgence detection.
    Parag KV; Obolski U
    PLoS Comput Biol; 2023 Jul; 19(7):e1011332. PubMed ID: 37471464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing epidemic spreading by optimizing the allocation of resources between prevention and treatment.
    Li J; Yang C; Ma X; Gao Y; Fu C; Yang H
    Chaos; 2019 Nov; 29(11):113108. PubMed ID: 31779370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular reproduction numbers improve estimates of transmissibility when disease generation times are misspecified or time-varying.
    Parag KV; Cowling BJ; Lambert BC
    Proc Biol Sci; 2023 Sep; 290(2007):20231664. PubMed ID: 37752839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidemic spreading on metapopulation networks including migration and demographics.
    Gong Y; Small M
    Chaos; 2018 Aug; 28(8):083102. PubMed ID: 30180639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of human immunodeficiency virus (HIV) sub-epidemics in Italian regions.
    Barcherini S; Cantoni M; Grossi P; Verdecchia A
    Int J Epidemiol; 1999 Feb; 28(1):122-9. PubMed ID: 10195676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling epidemic spreading through public transit using time-varying encounter network.
    Mo B; Feng K; Shen Y; Tam C; Li D; Yin Y; Zhao J
    Transp Res Part C Emerg Technol; 2021 Jan; 122():102893. PubMed ID: 33519128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidemic spreading on multilayer homogeneous evolving networks.
    Yang JX
    Chaos; 2019 Oct; 29(10):103146. PubMed ID: 31675801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal test-kit-based intervention strategy of epidemic spreading in heterogeneous complex networks.
    Ghosh S; Senapati A; Chattopadhyay J; Hens C; Ghosh D
    Chaos; 2021 Jul; 31(7):071101. PubMed ID: 34340350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic spreading through direct and indirect interactions.
    Ganguly N; Krueger T; Mukherjee A; Saha S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032808. PubMed ID: 25314483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pareto rules for malaria super-spreaders and super-spreading.
    Cooper L; Kang SY; Bisanzio D; Maxwell K; Rodriguez-Barraquer I; Greenhouse B; Drakeley C; Arinaitwe E; G Staedke S; Gething PW; Eckhoff P; Reiner RC; Hay SI; Dorsey G; Kamya MR; Lindsay SW; Grenfell BT; Smith DL
    Nat Commun; 2019 Sep; 10(1):3939. PubMed ID: 31477710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using active matter to introduce spatial heterogeneity to the susceptible infected recovered model of epidemic spreading.
    Forgács P; Libál A; Reichhardt C; Hengartner N; Reichhardt CJO
    Sci Rep; 2022 Jul; 12(1):11229. PubMed ID: 35787642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Farm-level reproduction number during an epidemic of infectious salmon anemia virus in southern Chile in 2007-2009.
    Mardones FO; Perez AM; Valdes-Donoso P; Carpenter TE
    Prev Vet Med; 2011 Dec; 102(3):175-84. PubMed ID: 21840073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel measurement of spreading pattern of influenza epidemic by using weighted standard distance method: retrospective spatial statistical study of influenza, Japan, 1999-2009.
    Shobugawa Y; Wiafe SA; Saito R; Suzuki T; Inaida S; Taniguchi K; Suzuki H
    Int J Health Geogr; 2012 Jun; 11():20. PubMed ID: 22713508
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.