These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34404448)
1. Quantifying the phase separation property of chromatin-associated proteins under physiological conditions using an anti-1,6-hexanediol index. Shi M; You K; Chen T; Hou C; Liang Z; Liu M; Wang J; Wei T; Qin J; Chen Y; Zhang MQ; Li T Genome Biol; 2021 Aug; 22(1):229. PubMed ID: 34404448 [TBL] [Abstract][Full Text] [Related]
2. Investigating phase separation properties of chromatin-associated proteins using gradient elution of 1,6-hexanediol. Zhu P; Hou C; Liu M; Chen T; Li T; Wang L BMC Genomics; 2023 Aug; 24(1):493. PubMed ID: 37641002 [TBL] [Abstract][Full Text] [Related]
3. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Liu X; Jiang S; Ma L; Qu J; Zhao L; Zhu X; Ding J Genome Biol; 2021 Aug; 22(1):230. PubMed ID: 34404453 [TBL] [Abstract][Full Text] [Related]
4. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Ulianov SV; Velichko AK; Magnitov MD; Luzhin AV; Golov AK; Ovsyannikova N; Kireev II; Gavrikov AS; Mishin AS; Garaev AK; Tyakht AV; Gavrilov AA; Kantidze OL; Razin SV Nucleic Acids Res; 2021 Oct; 49(18):10524-10541. PubMed ID: 33836078 [TBL] [Abstract][Full Text] [Related]
5. 1,6-hexanediol rapidly immobilizes and condenses chromatin in living human cells. Itoh Y; Iida S; Tamura S; Nagashima R; Shiraki K; Goto T; Hibino K; Ide S; Maeshima K Life Sci Alliance; 2021 Apr; 4(4):. PubMed ID: 33536240 [TBL] [Abstract][Full Text] [Related]
6. 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. Düster R; Kaltheuner IH; Schmitz M; Geyer M J Biol Chem; 2021; 296():100260. PubMed ID: 33814344 [TBL] [Abstract][Full Text] [Related]
7. Specific protein-RNA interactions are mostly preserved in biomolecular condensates. de Vries T; Novakovic M; Ni Y; Smok I; Inghelram C; Bikaki M; Sarnowski CP; Han Y; Emmanouilidis L; Padroni G; Leitner A; Allain FH Sci Adv; 2024 Mar; 10(10):eadm7435. PubMed ID: 38446881 [TBL] [Abstract][Full Text] [Related]
8. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089 [TBL] [Abstract][Full Text] [Related]
9. Chromatin Liquid-Liquid Phase Separation (LLPS) Is Regulated by Ionic Conditions and Fiber Length. Chen Q; Zhao L; Soman A; Arkhipova AY; Li J; Li H; Chen Y; Shi X; Nordenskiöld L Cells; 2022 Oct; 11(19):. PubMed ID: 36231107 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Phase-Separated Biomolecular Condensates in Cancer. Li W; Jiang H Methods Mol Biol; 2023; 2660():345-356. PubMed ID: 37191808 [TBL] [Abstract][Full Text] [Related]
12. Learning the molecular grammar of protein condensates from sequence determinants and embeddings. Saar KL; Morgunov AS; Qi R; Arter WE; Krainer G; Lee AA; Knowles TPJ Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33827920 [TBL] [Abstract][Full Text] [Related]
13. 1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. Jiang Y; Lei G; Lin T; Zhou N; Wu J; Wang Z; Fan Y; Sheng H; Mao R BMC Biol; 2023 Apr; 21(1):75. PubMed ID: 37024934 [TBL] [Abstract][Full Text] [Related]
14. In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins. Pintado-Grima C; Bárcenas O; Ventura S Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883530 [TBL] [Abstract][Full Text] [Related]
15. Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression. Peng Q; Wang L; Qin Z; Wang J; Zheng X; Wei L; Zhang X; Zhang X; Liu C; Li Z; Wu Y; Li G; Yan Q; Ma J J Virol; 2020 Mar; 94(7):. PubMed ID: 31941785 [TBL] [Abstract][Full Text] [Related]
16. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Peng PH; Hsu KW; Wu KJ Am J Cancer Res; 2021; 11(8):3766-3776. PubMed ID: 34522448 [TBL] [Abstract][Full Text] [Related]
17. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Ning W; Guo Y; Lin S; Mei B; Wu Y; Jiang P; Tan X; Zhang W; Chen G; Peng D; Chu L; Xue Y Nucleic Acids Res; 2020 Jan; 48(D1):D288-D295. PubMed ID: 31691822 [TBL] [Abstract][Full Text] [Related]
18. Control of Chromatin Organization and Chromosome Behavior during the Cell Cycle through Phase Separation. Li J; Gao J; Wang R Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830152 [TBL] [Abstract][Full Text] [Related]
19. Phase separation of chromatin and small RNA pathways in plants. Lei Z; Wang L; Kim EY; Cho J Plant J; 2021 Dec; 108(5):1256-1265. PubMed ID: 34585805 [TBL] [Abstract][Full Text] [Related]
20. Stochastic Monte Carlo Model for Simulating the Dynamic Liquid-Liquid Phase Separation in Bacterial Cells. Zhang J; Huang Y; Bai F J Phys Chem B; 2023 May; 127(18):4145-4153. PubMed ID: 37130439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]