These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34404517)

  • 1. Clinical evaluation of a deep-learning-based computer-aided detection system for the detection of pulmonary nodules in a large teaching hospital.
    Martins Jarnalo CO; Linsen PVM; BlazĂ­s SP; van der Valk PHM; Dickerscheid DBM
    Clin Radiol; 2021 Nov; 76(11):838-845. PubMed ID: 34404517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography.
    Kozuka T; Matsukubo Y; Kadoba T; Oda T; Suzuki A; Hyodo T; Im S; Kaida H; Yagyu Y; Tsurusaki M; Matsuki M; Ishii K
    Jpn J Radiol; 2020 Nov; 38(11):1052-1061. PubMed ID: 32592003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population.
    Murchison JT; Ritchie G; Senyszak D; Nijwening JH; van Veenendaal G; Wakkie J; van Beek EJR
    PLoS One; 2022; 17(5):e0266799. PubMed ID: 35511758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program.
    Cui X; Zheng S; Heuvelmans MA; Du Y; Sidorenkov G; Fan S; Li Y; Xie Y; Zhu Z; Dorrius MD; Zhao Y; Veldhuis RNJ; de Bock GH; Oudkerk M; van Ooijen PMA; Vliegenthart R; Ye Z
    Eur J Radiol; 2022 Jan; 146():110068. PubMed ID: 34871936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying pulmonary nodules or masses on chest radiography using deep learning: external validation and strategies to improve clinical practice.
    Liang CH; Liu YC; Wu MT; Garcia-Castro F; Alberich-Bayarri A; Wu FZ
    Clin Radiol; 2020 Jan; 75(1):38-45. PubMed ID: 31521323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.
    Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B
    Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of radiologist and CAD performance in the detection of CT-confirmed subtle pulmonary nodules on digital chest radiographs.
    Bley TA; Baumann T; Saueressig U; Pache G; Treier M; Schaefer O; Neitzel U; Langer M; Kotter E
    Invest Radiol; 2008 Jun; 43(6):343-8. PubMed ID: 18496038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the performance of a deep learning-based computer-aided diagnosis (DL-CAD) system for detecting and characterizing lung nodules: Comparison with the performance of double reading by radiologists.
    Li L; Liu Z; Huang H; Lin M; Luo D
    Thorac Cancer; 2019 Feb; 10(2):183-192. PubMed ID: 30536611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs.
    Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW
    Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv.
    Messerli M; Kluckert T; Knitel M; Rengier F; Warschkow R; Alkadhi H; Leschka S; Wildermuth S; Bauer RW
    Eur J Radiol; 2016 Dec; 85(12):2217-2224. PubMed ID: 27842670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of a computer-aided vessel-suppression system to detect lung nodules in CT images: effect on sensitivity and reading time in routine clinical settings.
    Takaishi T; Ozawa Y; Bando Y; Yamamoto A; Okochi S; Suzuki H; Shibamoto Y
    Jpn J Radiol; 2021 Feb; 39(2):159-164. PubMed ID: 32940850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Analysis in Children of Traditional and Deep Learning CT Lung Nodule Computer-Aided Detection Systems Trained on Adults.
    Hardie RC; Trout AT; Dillman JR; Narayanan BN; Tanimoto AA
    AJR Am J Roentgenol; 2024 Feb; 222(2):e2330345. PubMed ID: 37991333
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size.
    Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Kazerooni EA; Chughtai AR; Poopat C; Song T; Frank L; Stojanovska J; Attili A
    Acad Radiol; 2009 Dec; 16(12):1518-30. PubMed ID: 19896069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary nodules detection assistant platform: An effective computer aided system for early pulmonary nodules detection in physical examination.
    Han Y; Qi H; Wang L; Chen C; Miao J; Xu H; Wang Z; Guo Z; Xu Q; Lin Q; Liu H; Lu J; Liang F; Feng W; Li H; Liu Y
    Comput Methods Programs Biomed; 2022 Apr; 217():106680. PubMed ID: 35176595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commercially available computer-aided detection system for pulmonary nodules on thin-section images using 64 detectors-row CT: preliminary study of 48 cases.
    Yanagawa M; Honda O; Yoshida S; Ono Y; Inoue A; Daimon T; Sumikawa H; Mihara N; Johkoh T; Tomiyama N; Nakamura H
    Acad Radiol; 2009 Aug; 16(8):924-33. PubMed ID: 19394873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cloud-based computer-aided detection system improves identification of lung nodules on computed tomography scans of patients with extra-thoracic malignancies.
    Vassallo L; Traverso A; Agnello M; Bracco C; Campanella D; Chiara G; Fantacci ME; Lopez Torres E; Manca A; Saletta M; Giannini V; Mazzetti S; Stasi M; Cerello P; Regge D
    Eur Radiol; 2019 Jan; 29(1):144-152. PubMed ID: 29948089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based automatic detection for pulmonary nodules on chest radiographs: The relationship with background lung condition, nodule characteristics, and location.
    Ueno M; Yoshida K; Takamatsu A; Kobayashi T; Aoki T; Gabata T
    Eur J Radiol; 2023 Sep; 166():111002. PubMed ID: 37499478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of radiation dose reduction and iterative reconstruction on computer-aided detection of pulmonary nodules: Intra-individual comparison.
    Den Harder AM; Willemink MJ; van Hamersvelt RW; Vonken EJ; Milles J; Schilham AM; Lammers JW; de Jong PA; Leiner T; Budde RP
    Eur J Radiol; 2016 Feb; 85(2):346-51. PubMed ID: 26781139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The performance of digital chest radiographs in the detection and diagnosis of pulmonary nodules and the consistency among readers].
    Liang M; Zhao SJ; Zhou LN; Xu XJ; Wang YW; Niu L; Wang HH; Tang W; Wu N
    Zhonghua Zhong Liu Za Zhi; 2023 Mar; 45(3):265-272. PubMed ID: 36944548
    [No Abstract]   [Full Text] [Related]  

  • 20. Prospective Pilot Evaluation of Radiologists and Computer-aided Pulmonary Nodule Detection on Ultra-low-Dose CT With Tin Filtration.
    Takahashi EA; Koo CW; White DB; Lindell RM; Sykes AG; Levin DL; Kuzo RS; Wolf M; Bogoni L; Carter RE; McCollough CH; Fletcher JG
    J Thorac Imaging; 2018 Nov; 33(6):396-401. PubMed ID: 30048344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.