These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 34405144)

  • 1. KAT4IA:
    Guo X; Qiu Y; Nettleton D; Yeh CT; Zheng Z; Hey S; Schnable PS
    Plant Phenomics; 2021; 2021():9805489. PubMed ID: 34405144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Field Plant Phenotyping: A Self-Supervised Sequential CNN Method to Segment Overlapping Plants.
    Guo X; Qiu Y; Nettleton D; Schnable PS
    Plant Phenomics; 2023; 5():0052. PubMed ID: 37213545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Object Detection in Experimental Data Using Combination of Unsupervised and Supervised Methods.
    Wu Y; Wang Z; Ripplinger CM; Sato D
    Front Physiol; 2022; 13():805161. PubMed ID: 35464087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Corn Image Segmentation and Trait Extraction Using Chlorophyll Fluorescence Images.
    Souza A; Yang Y
    Plant Phenomics; 2021; 2021():9792582. PubMed ID: 34382005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised Segmentation of Greenhouse Plant Images Based on Statistical Method.
    Zhang P; Xu L
    Sci Rep; 2018 Mar; 8(1):4465. PubMed ID: 29535402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-step registration-classification approach to automated segmentation of multimodal images for high-throughput greenhouse plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    Plant Methods; 2020; 16():95. PubMed ID: 32670387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping.
    Okyere FG; Cudjoe D; Sadeghi-Tehran P; Virlet N; Riche AB; Castle M; Greche L; Mohareb F; Simms D; Mhada M; Hawkesford MJ
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-supervised strategy for fully automatic segmentation of renal dynamic contrast-enhanced magnetic resonance images.
    Huang W; Li H; Wang R; Zhang X; Wang X; Zhang J
    Med Phys; 2019 Oct; 46(10):4417-4430. PubMed ID: 31306492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised Bayesian learning for rice panicle segmentation with UAV images.
    Hayat MA; Wu J; Cao Y
    Plant Methods; 2020; 16():18. PubMed ID: 32123536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.
    Du J; Lu X; Fan J; Qin Y; Yang X; Guo X
    Front Plant Sci; 2020; 11():563386. PubMed ID: 33123178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline.
    Bauer FM; Lärm L; Morandage S; Lobet G; Vanderborght J; Vereecken H; Schnepf A
    Plant Phenomics; 2022; 2022():9758532. PubMed ID: 35693120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in
    Lagergren J; Pavicic M; Chhetri HB; York LM; Hyatt D; Kainer D; Rutter EM; Flores K; Bailey-Bale J; Klein M; Taylor G; Jacobson D; Streich J
    Plant Phenomics; 2023; 5():0072. PubMed ID: 37519935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners.
    Opbroek AV; Vernooij MW; Ikram MA; Bruijne M
    Med Image Anal; 2015 Aug; 24(1):245-254. PubMed ID: 26210914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-supervised feature extraction from image time series in plant phenotyping using triplet networks.
    Marin Zapata PA; Roth S; Schmutzler D; Wolf T; Manesso E; Clevert DA
    Bioinformatics; 2021 May; 37(6):861-867. PubMed ID: 33241296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.