BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 34405211)

  • 1. [n-3 Polyunsaturated fatty acid attenuates hyperhomocysteinemia-induced hepatic steatosis by increasing hepatic LXA
    Song H; Duan JJ; Li K; Yao L; Zhu Y
    Sheng Li Xue Bao; 2021 Aug; 73(4):551-558. PubMed ID: 34405211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperhomocysteinemia activates the aryl hydrocarbon receptor/CD36 pathway to promote hepatic steatosis in mice.
    Yao L; Wang C; Zhang X; Peng L; Liu W; Zhang X; Liu Y; He J; Jiang C; Ai D; Zhu Y
    Hepatology; 2016 Jul; 64(1):92-105. PubMed ID: 26928949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omega-3 PUFA ameliorates hyperhomocysteinemia-induced hepatic steatosis in mice by inhibiting hepatic ceramide synthesis.
    Dong YQ; Zhang XZ; Sun LL; Zhang SY; Liu B; Liu HY; Wang X; Jiang CT
    Acta Pharmacol Sin; 2017 Dec; 38(12):1601-1610. PubMed ID: 28933423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of soluble epoxide hydrolase ameliorates hyperhomocysteinemia-induced hepatic steatosis by enhancing β-oxidation of fatty acid in mice.
    Yao L; Cao B; Cheng Q; Cai W; Ye C; Liang J; Liu W; Tan L; Yan M; Li B; He J; Hwang SH; Zhang X; Wang C; Ai D; Hammock BD; Zhu Y
    Am J Physiol Gastrointest Liver Physiol; 2019 Apr; 316(4):G527-G538. PubMed ID: 30789748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperhomocysteinemia activates NLRP3 inflammasome to cause hepatic steatosis and insulin resistance via MDM2-mediated ubiquitination of HSF1.
    Xiang W; Yang Y; Weng L; Ye Z; Ding P; Li H; Sun J; Zeng C
    Int Immunopharmacol; 2023 May; 118():110085. PubMed ID: 37018978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Alleviating effects of hydrogen on hyperhomocysteinemia and fatty liver induced by high-methionine diet].
    Chu WB; Ding TQ; Wen B; Lu JY; Fan R; Chen XW
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2022 Nov; 38(6):787-792. PubMed ID: 37308436
    [No Abstract]   [Full Text] [Related]  

  • 7. Orphan nuclear receptor NR4A1 suppresses hyperhomocysteinemia-induced hepatic steatosis in vitro and in vivo.
    Liang H; Xie X; Song X; Huang M; Su T; Chang X; Liang B; Huang D
    FEBS Lett; 2019 May; 593(10):1061-1071. PubMed ID: 30973961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homocysteine Induces Hepatic Steatosis Involving ER Stress Response in High Methionine Diet-Fed Mice.
    Ai Y; Sun Z; Peng C; Liu L; Xiao X; Li J
    Nutrients; 2017 Apr; 9(4):. PubMed ID: 28368295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of peroxisome proliferator-activated receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation.
    Larter CZ; Yeh MM; Cheng J; Williams J; Brown S; dela Pena A; Bell-Anderson KS; Farrell GC
    J Gastroenterol Hepatol; 2008 Feb; 23(2):267-75. PubMed ID: 17868330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin-mediated CD36 translational suppression contributes to alleviation of hepatic steatosis.
    Wang C; Yan Y; Hu L; Zhao L; Yang P; Moorhead JF; Varghese Z; Chen Y; Ruan XZ
    Biochem Biophys Res Commun; 2014 Apr; 447(1):57-63. PubMed ID: 24685479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombospondin 1 improves hepatic steatosis in diet-induced insulin-resistant mice and is associated with hepatic fat content in humans.
    Bai J; Xia M; Xue Y; Ma F; Cui A; Sun Y; Han Y; Xu X; Zhang F; Hu Z; Liu Z; Liu Y; Cai G; Su W; Sun X; Wu H; Yan H; Chang X; Hu X; Bian H; Xia P; Gao J; Li Y; Gao X
    EBioMedicine; 2020 Jul; 57():102849. PubMed ID: 32580141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology.
    Khadge S; Sharp JG; Thiele GM; McGuire TR; Klassen LW; Duryee MJ; Britton HC; Dafferner AJ; Beck J; Black PN; DiRusso CC; Talmadge J
    J Nutr Biochem; 2018 Feb; 52():92-102. PubMed ID: 29175671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.
    Umezawa M; Nakamura M; El-Ghoneimy AA; Onoda A; Shaheen HM; Hori H; Shinkai Y; El-Sayed YS; El-Far AH; Takeda K
    Food Chem Toxicol; 2018 Jan; 111():284-294. PubMed ID: 29175182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term dietary supplementation with saury oil attenuates metabolic abnormalities in mice fed a high-fat diet: combined beneficial effect of omega-3 fatty acids and long-chain monounsaturated fatty acids.
    Yang ZH; Inoue S; Taniguchi Y; Miyahara H; Iwasaki Y; Takeo J; Sakaue H; Nakaya Y
    Lipids Health Dis; 2015 Dec; 14():155. PubMed ID: 26627187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition.
    Pachikian BD; Neyrinck AM; Cani PD; Portois L; Deldicque L; De Backer FC; Bindels LB; Sohet FM; Malaisse WJ; Francaux M; Carpentier YA; Delzenne NM
    BMC Physiol; 2008 Dec; 8():21. PubMed ID: 19046413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport.
    Kawano Y; Nishiumi S; Tanaka S; Nobutani K; Miki A; Yano Y; Seo Y; Kutsumi H; Ashida H; Azuma T; Yoshida M
    Arch Biochem Biophys; 2010 Dec; 504(2):221-7. PubMed ID: 20831858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosteatotic genes are associated with unsaturated fat suppression of saturated fat-induced hepatic steatosis in C57BL/6 mice.
    Geng T; Xia L; Russo S; Kamara D; Cowart LA
    Nutr Res; 2015 Sep; 35(9):812-22. PubMed ID: 26277244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Transgenic Production to Supplementation of ω-3 PUFA Reveals Distinct But Overlapping Mechanisms Underlying Protection Against Metabolic and Hepatic Disorders.
    Daniel N; Le Barz M; Mitchell PL; Varin TV; Julien IB; Farabos D; Pilon G; Gauthier J; Garofalo C; Kang JX; Trottier J; Barbier O; Roy D; Chassaing B; Levy E; Raymond F; Lamaziere A; Flamand N; Silvestri C; Jobin C; Di Marzo V; Marette A
    Function (Oxf); 2023; 4(2):zqac069. PubMed ID: 36778746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways.
    Pachikian BD; Essaghir A; Demoulin JB; Catry E; Neyrinck AM; Dewulf EM; Sohet FM; Portois L; Clerbaux LA; Carpentier YA; Possemiers S; Bommer GT; Cani PD; Delzenne NM
    Mol Nutr Food Res; 2013 Feb; 57(2):347-59. PubMed ID: 23203768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEGylated Curcumin Derivative Attenuates Hepatic Steatosis via CREB/PPAR-
    Liu Y; Cheng F; Luo Y; Zhan Z; Hu P; Ren H; Tang H; Peng M
    Biomed Res Int; 2017; 2017():8234507. PubMed ID: 28770225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.