These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34405298)

  • 1. Effects of Interobserver Variability on 2D and 3D CT- and MRI-Based Texture Feature Reproducibility of Cartilaginous Bone Tumors.
    Gitto S; Cuocolo R; Emili I; Tofanelli L; Chianca V; Albano D; Messina C; Imbriaco M; Sconfienza LM
    J Digit Imaging; 2021 Aug; 34(4):820-832. PubMed ID: 34405298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Interobserver Segmentation Variability and Intensity Discretization on MRI-Based Radiomic Feature Reproducibility of Lipoma and Atypical Lipomatous Tumor.
    Gitto S; Cuocolo R; Giannetta V; Badalyan J; Di Luca F; Fusco S; Zantonelli G; Albano D; Messina C; Sconfienza LM
    J Imaging Inform Med; 2024 Jun; 37(3):1187-1200. PubMed ID: 38332405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness of Radiomic Features: Two-Dimensional versus Three-Dimensional MRI-Based Feature Reproducibility in Lipomatous Soft-Tissue Tumors.
    Sudjai N; Siriwanarangsun P; Lektrakul N; Saiviroonporn P; Maungsomboon S; Phimolsarnti R; Asavamongkolkul A; Chandhanayingyong C
    Diagnostics (Basel); 2023 Jan; 13(2):. PubMed ID: 36673068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability of Single-Slice-Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility.
    Kocak B; Durmaz ES; Kaya OK; Ates E; Kilickesmez O
    AJR Am J Roentgenol; 2019 Aug; 213(2):377-383. PubMed ID: 31063427
    [No Abstract]   [Full Text] [Related]  

  • 5. CT texture analysis reliability in pulmonary lesions: the influence of 3D vs. 2D lesion segmentation and volume definition by a Hounsfield-unit threshold.
    Adelsmayr G; Janisch M; Kaufmann-Bühler AK; Holter M; Talakic E; Janek E; Holzinger A; Fuchsjäger M; Schöllnast H
    Eur Radiol; 2023 May; 33(5):3064-3071. PubMed ID: 36947188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation.
    Ren J; Yuan Y; Qi M; Tao X
    Eur Radiol; 2020 Dec; 30(12):6858-6866. PubMed ID: 32591885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI.
    Zhao W; Hu Z; Kazerooni AF; Körzdörfer G; Nittka M; Davatzikos C; Viswanath SE; Wang X; Badve C; Ma D
    Invest Radiol; 2024 May; 59(5):359-371. PubMed ID: 37812483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas.
    Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O
    Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI radiomics-based machine-learning classification of bone chondrosarcoma.
    Gitto S; Cuocolo R; Albano D; Chianca V; Messina C; Gambino A; Ugga L; Cortese MC; Lazzara A; Ricci D; Spairani R; Zanchetta E; Luzzati A; Brunetti A; Parafioriti A; Sconfienza LM
    Eur J Radiol; 2020 Jul; 128():109043. PubMed ID: 32438261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Radiomics feature quantification using semiautomatic volumetric segmentation.
    Parmar C; Rios Velazquez E; Leijenaar R; Jermoumi M; Carvalho S; Mak RH; Mitra S; Shankar BU; Kikinis R; Haibe-Kains B; Lambin P; Aerts HJ
    PLoS One; 2014; 9(7):e102107. PubMed ID: 25025374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction.
    Gitto S; Corino VDA; Annovazzi A; Milazzo Machado E; Bologna M; Marzorati L; Albano D; Messina C; Serpi F; Anelli V; Ferraresi V; Zoccali C; Aliprandi A; Parafioriti A; Luzzati A; Biagini R; Mainardi L; Sconfienza LM
    Front Oncol; 2022; 12():1016123. PubMed ID: 36531029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of unenhanced CT-based imaging signature for BAP1 mutation status prediction in malignant pleural mesothelioma: Consideration of 2D and 3D segmentation.
    Xie XJ; Liu SY; Chen JY; Zhao Y; Jiang J; Wu L; Zhang XW; Wu Y; Duan H; He B; Luo H; Han D
    Lung Cancer; 2021 Jul; 157():30-39. PubMed ID: 34052706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging of cartilaginous tumors: a retrospective study of 79 patients.
    De Beuckeleer LH; De Schepper AM; Ramon F; Somville J
    Eur J Radiol; 1995 Nov; 21(1):34-40. PubMed ID: 8654456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance.
    Gitto S; Bologna M; Corino VDA; Emili I; Albano D; Messina C; Armiraglio E; Parafioriti A; Luzzati A; Mainardi L; Sconfienza LM
    Radiol Med; 2022 May; 127(5):518-525. PubMed ID: 35320464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of central cartilaginous tumor of the appendicular bone: inter-observer and intermodality agreement and comparison of diagnostic performance of CT and MRI.
    Lee S; Yoon MA
    Acta Radiol; 2022 Mar; 63(3):376-386. PubMed ID: 33641451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor-to-bone distance and radiomic features on MRI distinguish intramuscular lipomas from well-differentiated liposarcomas.
    Sudjai N; Siriwanarangsun P; Lektrakul N; Saiviroonporn P; Maungsomboon S; Phimolsarnti R; Asavamongkolkul A; Chandhanayingyong C
    J Orthop Surg Res; 2023 Mar; 18(1):255. PubMed ID: 36978182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease.
    Pasoglou V; Michoux N; Peeters F; Larbi A; Tombal B; Selleslagh T; Omoumi P; Vande Berg BC; Lecouvet FE
    Radiology; 2015 Apr; 275(1):155-66. PubMed ID: 25513855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal acquisition repeatability of MRI radiomics features: An ACR MRI phantom study on two MRI scanners using a 3D T1W TSE sequence.
    Wong OL; Yuan J; Zhou Y; Yu SK; Cheung KY
    Med Phys; 2021 Mar; 48(3):1239-1249. PubMed ID: 33370474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Resonance Imaging-Based Grading of Cartilaginous Bone Tumors: Added Value of Quantitative Texture Analysis.
    Fritz B; Müller DA; Sutter R; Wurnig MC; Wagner MW; Pfirrmann CWA; Fischer MA
    Invest Radiol; 2018 Nov; 53(11):663-672. PubMed ID: 29863601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.