BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 344055)

  • 1. Control of cell division in the yeast Saccharomyces cerevisiae cultured at different growth rates.
    Carter BL; Jagadish MN
    Exp Cell Res; 1978 Mar; 112(2):373-83. PubMed ID: 344055
    [No Abstract]   [Full Text] [Related]  

  • 2. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. II. Relief of cell-cycle constraints allows accelerated cell divisions.
    Singer RA; Johnston GC
    Exp Cell Res; 1983 Nov; 149(1):15-26. PubMed ID: 6357813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and the DNA-division sequence in the yeast Saccharomyces cerevisiae.
    Singer RA; Johnston GC
    Exp Cell Res; 1985 Apr; 157(2):387-96. PubMed ID: 3884347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae.
    Johnston GC; Pringle JR; Hartwell LH
    Exp Cell Res; 1977 Mar; 105(1):79-98. PubMed ID: 320023
    [No Abstract]   [Full Text] [Related]  

  • 5. Genetic control of cell division in yeast cultured at different growth rates.
    Jagadish MN; Carter BL
    Nature; 1977 Sep; 269(5624):145-7. PubMed ID: 333292
    [No Abstract]   [Full Text] [Related]  

  • 6. Nature of the G1 phase of the yeast Saccharomyces cerevisiae.
    Singer RA; Johnston GC
    Proc Natl Acad Sci U S A; 1981 May; 78(5):3030-3. PubMed ID: 7019917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Start" mutants of Saccharomyces cerevisiae are suppressed in carbon catabolite-derepressing medium.
    Shuster JR
    J Bacteriol; 1982 Aug; 151(2):1059-61. PubMed ID: 7047491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. I. Slowing S phase or nuclear division decreases the G1 cell cycle period.
    Johnston GC; Singer RA
    Exp Cell Res; 1983 Nov; 149(1):1-13. PubMed ID: 6357811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bifunctional gene product involved in two phases of the yeast cell cycle.
    Piggott JR; Rai R; Carter BL
    Nature; 1982 Jul; 298(5872):391-3. PubMed ID: 7045699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell division and deoxyribonucleic acid synthesis after a nutritional shift-up of Saccharomyces cerevisiae.
    Jacobson GK; Parks LW
    J Bacteriol; 1973 May; 114(2):876-7. PubMed ID: 4574702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The possible functional significance of phosphatidylinositol in G1 arrest of Saccharomyces cerevisiae.
    Dudani AK; Trivedi A; Prasad R
    FEBS Lett; 1983 Mar; 153(1):34-6. PubMed ID: 6337878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient-specific effects in the coordination of cell growth with cell division in continuous cultures of Saccharomyces cerevisiae.
    Guo J; Bryan BA; Polymenis M
    Arch Microbiol; 2004 Oct; 182(4):326-30. PubMed ID: 15349714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of temperature-sensitive mutants of yeast by a photomicrographic procedure.
    Klyce HR; McLaughlin CS
    Exp Cell Res; 1973 Nov; 82(1):47-56. PubMed ID: 4584623
    [No Abstract]   [Full Text] [Related]  

  • 14. Use of yeast populations fractionated by zonal centrifugation to study the cell cycle.
    Sebastian J; Carter BL; Halvorson HO
    J Bacteriol; 1971 Dec; 108(3):1045-50. PubMed ID: 4945182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae.
    Motizuki M; Yokota S; Tsurugi K
    Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular synthesis during conjugation in yeast.
    Zuk J; Zaborowska D; Litwińska J; Chlebowicz E; Biliński T
    Acta Microbiol Pol A; 1975; 7(2):67-75. PubMed ID: 1098406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cdc30 mutation in Saccharomyces cerevisiae results in a temperature-sensitive isoenzyme of phosphoglucose isomerase.
    Dickinson JR; Williams AS
    J Gen Microbiol; 1987 Jan; 133(1):135-40. PubMed ID: 3309140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific early-G1 blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the G0 of higher eucaryotes.
    Iida H; Yahara I
    J Cell Biol; 1984 Apr; 98(4):1185-93. PubMed ID: 6371018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a labile protein involved in the G1-to-S transition in Saccharomyces cerevisiae.
    Popolo L; Alberghina L
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):120-4. PubMed ID: 6364132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of a baby machine for Saccharomyces cerevisiae.
    Helmstetter CE
    New Biol; 1991 Nov; 3(11):1089-96. PubMed ID: 1777482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.