These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Simultaneous determination of choline, L-carnitine, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in plasma, liver, and feces of hyperlipidemic rats by UHPLC-MS/MS. Xu C; Zhang M; Zhang S; Wang P; Lai C; Meng D; Chen Z; Yi X; Gao X J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Aug; 1243():124210. PubMed ID: 38936270 [TBL] [Abstract][Full Text] [Related]
7. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations. Malinowska AM; Szwengiel A; Chmurzynska A Int J Food Sci Nutr; 2017 Jun; 68(4):488-495. PubMed ID: 27855528 [TBL] [Abstract][Full Text] [Related]
8. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk. Bergeron N; Williams PT; Lamendella R; Faghihnia N; Grube A; Li X; Wang Z; Knight R; Jansson JK; Hazen SL; Krauss RM Br J Nutr; 2016 Dec; 116(12):2020-2029. PubMed ID: 27993177 [TBL] [Abstract][Full Text] [Related]
9. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Park JE; Miller M; Rhyne J; Wang Z; Hazen SL Nutr Metab Cardiovasc Dis; 2019 May; 29(5):513-517. PubMed ID: 30940489 [TBL] [Abstract][Full Text] [Related]
10. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Griffin LE; Djuric Z; Angiletta CJ; Mitchell CM; Baugh ME; Davy KP; Neilson AP Food Funct; 2019 Apr; 10(4):2138-2147. PubMed ID: 30938383 [TBL] [Abstract][Full Text] [Related]
12. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Fu BC; Hullar MAJ; Randolph TW; Franke AA; Monroe KR; Cheng I; Wilkens LR; Shepherd JA; Madeleine MM; Le Marchand L; Lim U; Lampe JW Am J Clin Nutr; 2020 Jun; 111(6):1226-1234. PubMed ID: 32055828 [TBL] [Abstract][Full Text] [Related]
13. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Zhu C; Sawrey-Kubicek L; Bardagjy AS; Houts H; Tang X; Sacchi R; Randolph JM; Steinberg FM; Zivkovic AM Nutr Res; 2020 Jun; 78():36-41. PubMed ID: 32464420 [TBL] [Abstract][Full Text] [Related]
14. Plasma Concentrations of Trimethylamine-N-oxide Are Directly Associated with Dairy Food Consumption and Low-Grade Inflammation in a German Adult Population. Rohrmann S; Linseisen J; Allenspach M; von Eckardstein A; Müller D J Nutr; 2016 Feb; 146(2):283-9. PubMed ID: 26674761 [TBL] [Abstract][Full Text] [Related]
15. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. Gao X; Liu X; Xu J; Xue C; Xue Y; Wang Y J Biosci Bioeng; 2014 Oct; 118(4):476-81. PubMed ID: 24721123 [TBL] [Abstract][Full Text] [Related]
16. Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal. Tarpey MD; Davy KP; McMillan RP; Bowser SM; Halliday TM; Boutagy NE; Davy BM; Frisard MI; Hulver MW Mol Metab; 2017 Dec; 6(12):1597-1609. PubMed ID: 29097020 [TBL] [Abstract][Full Text] [Related]
17. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice. Gao X; Xu J; Jiang C; Zhang Y; Xue Y; Li Z; Wang J; Xue C; Wang Y Food Funct; 2015 Apr; 6(4):1117-25. PubMed ID: 25686243 [TBL] [Abstract][Full Text] [Related]
18. Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Eyupoglu ND; Caliskan Guzelce E; Acikgoz A; Uyanik E; Bjørndal B; Berge RK; Svardal A; Yildiz BO Clin Endocrinol (Oxf); 2019 Dec; 91(6):810-815. PubMed ID: 31556132 [TBL] [Abstract][Full Text] [Related]
19. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice. Yu ZL; Zhang LY; Jiang XM; Xue CH; Chi N; Zhang TT; Wang YM J Food Sci; 2020 Jul; 85(7):2207-2215. PubMed ID: 32572979 [TBL] [Abstract][Full Text] [Related]
20. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]