These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34405959)
1. Valeric Biofuel Production from γ-Valerolactone over Bifunctional Catalysts with Moderate Noble-Metal Loading. Martínez Figueredo KG; Virgilio EM; Segobia DJ; Bertero NM Chempluschem; 2021 Jul; 86(9):1342-1346. PubMed ID: 34405959 [TBL] [Abstract][Full Text] [Related]
2. Valeric Biofuels from Biomass-Derived γ-Valerolactone: A Critical Overview of Production Processes. Martínez Figueredo KG; Martínez FA; Segobia DJ; Bertero NM Chempluschem; 2023 Nov; 88(11):e202300381. PubMed ID: 37751007 [TBL] [Abstract][Full Text] [Related]
3. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
4. Cascade upgrading of γ-valerolactone to biofuels. Yan K; Lafleur T; Wu X; Chai J; Wu G; Xie X Chem Commun (Camb); 2015 Apr; 51(32):6984-7. PubMed ID: 25797827 [TBL] [Abstract][Full Text] [Related]
5. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability. Yu Z; Lu X; Bai H; Xiong J; Feng W; Ji N Chem Asian J; 2020 Apr; 15(8):1182-1201. PubMed ID: 32012471 [TBL] [Abstract][Full Text] [Related]
6. Promoter Effect of Pt on Zr Catalysts to Increase the Conversion of Furfural to γ-Valerolactone Using Batch and Continuous Flow Reactors: Influence of the Way of the Incorporation of the Pt Sites. García A; Saotta A; Miguel PJ; Sánchez-Tovar R; Fornasari G; Allegri A; Torres-Olea B; Cecilia JA; Albonetti S; Dimitratos N; Solsona B Energy Fuels; 2024 Jun; 38(11):9849-9861. PubMed ID: 38863684 [TBL] [Abstract][Full Text] [Related]
7. Vapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts. Pothu R; Challa P; Rajesh R; Boddula R; Balaga R; Balla P; Perugopu V; Radwan AB; Abdullah AM; Al-Qahtani N Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234542 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G Front Chem; 2020; 8():221. PubMed ID: 32373576 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the conversion of ethyl levulinate to γ-valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework. Yang J; Huang W; Liu Y; Zhou T RSC Adv; 2018 May; 8(30):16611-16618. PubMed ID: 35540507 [TBL] [Abstract][Full Text] [Related]
11. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO Kulyk K; Palianytsia B; Alexander JD; Azizova L; Borysenko M; Kartel M; Larsson M; Kulik T Chemphyschem; 2017 Jul; 18(14):1943-1955. PubMed ID: 28393449 [TBL] [Abstract][Full Text] [Related]
13. Falling Leaves Return to Their Roots: A Review on the Preparation of γ-Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose. Xu R; Liu K; Du H; Liu H; Cao X; Zhao X; Qu G; Li X; Li B; Si C ChemSusChem; 2020 Dec; 13(24):6461-6476. PubMed ID: 32961026 [TBL] [Abstract][Full Text] [Related]
14. Transformation of Levulinic Acid to Valeric Biofuels: A Review on Heterogeneous Bifunctional Catalytic Systems. Yu Z; Lu X; Xiong J; Ji N ChemSusChem; 2019 Sep; 12(17):3915-3930. PubMed ID: 31270936 [TBL] [Abstract][Full Text] [Related]
15. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. Córdova-Pérez GE; Cortez-Elizalde J; Silahua-Pavón AA; Cervantes-Uribe A; Arévalo-Pérez JC; Cordero-Garcia A; de Los Monteros AEE; Espinosa-González CG; Godavarthi S; Ortiz-Chi F; Guerra-Que Z; Torres-Torres JG Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745357 [TBL] [Abstract][Full Text] [Related]
16. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y. Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212 [TBL] [Abstract][Full Text] [Related]
17. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. Wright WR; Palkovits R ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968 [TBL] [Abstract][Full Text] [Related]
18. One-step upgrading of bio-based furfural to γ-valerolactone Li M; Liu Y; Lin X; Tan J; Yang S; Li H RSC Adv; 2021 Oct; 11(56):35415-35424. PubMed ID: 35493184 [TBL] [Abstract][Full Text] [Related]
19. Alloying nickel and cobalt with iron on ZSM-5 for tuning competitive hydrogenation reactions for selective one-pot conversion of furfural to gamma-valerolactone. Shao Y; Guo M; Fan M; Sun K; Gao G; Li C; Bkangmo Kontchouo FM; Zhang L; Zhang S; Hu X Dalton Trans; 2022 Nov; 51(45):17441-17453. PubMed ID: 36326162 [TBL] [Abstract][Full Text] [Related]
20. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]