BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34406033)

  • 1. CRISPR-Cas9 Technology as a Tool to Target Gene Drivers in Cancer: Proof of Concept and New Opportunities to Treat Chronic Myeloid Leukemia.
    Vuelta E; Ordoñez JL; Alonso-Pérez V; Méndez L; Hernández-Carabias P; Saldaña R; Sevilla J; Sebastián E; Muntión S; Sánchez-Guijo F; Hernández-Rivas JM; García-Tuñón I; Sánchez-Martín M
    CRISPR J; 2021 Aug; 4(4):519-535. PubMed ID: 34406033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia.
    García-Tuñón I; Hernández-Sánchez M; Ordoñez JL; Alonso-Pérez V; Álamo-Quijada M; Benito R; Guerrero C; Hernández-Rivas JM; Sánchez-Martín M
    Oncotarget; 2017 Apr; 8(16):26027-26040. PubMed ID: 28212528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy.
    Liu Y; Zhao G; Xu CF; Luo YL; Lu ZD; Wang J
    Biomater Sci; 2018 May; 6(6):1592-1603. PubMed ID: 29725684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells.
    Salati S; Salvestrini V; Carretta C; Genovese E; Rontauroli S; Zini R; Rossi C; Ruberti S; Bianchi E; Barbieri G; Curti A; Castagnetti F; Gugliotta G; Rosti G; Bergamaschi M; Tafuri A; Tagliafico E; Lemoli R; Manfredini R
    Oncotarget; 2017 Jul; 8(30):49451-49469. PubMed ID: 28533480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic Reprogramming Sensitizes CML Stem Cells to Combined EZH2 and Tyrosine Kinase Inhibition.
    Scott MT; Korfi K; Saffrey P; Hopcroft LE; Kinstrie R; Pellicano F; Guenther C; Gallipoli P; Cruz M; Dunn K; Jorgensen HG; Cassels JE; Hamilton A; Crossan A; Sinclair A; Holyoake TL; Vetrie D
    Cancer Discov; 2016 Nov; 6(11):1248-1257. PubMed ID: 27630125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts.
    Valletta S; Dolatshad H; Bartenstein M; Yip BH; Bello E; Gordon S; Yu Y; Shaw J; Roy S; Scifo L; Schuh A; Pellagatti A; Fulga TA; Verma A; Boultwood J
    Oncotarget; 2015 Dec; 6(42):44061-71. PubMed ID: 26623729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted disruption of the
    Zeng J; Liang X; Duan L; Tan F; Chen L; Qu J; Li J; Li K; Luo D; Hu Z
    Acta Biochim Biophys Sin (Shanghai); 2024 Apr; 56(4):525-537. PubMed ID: 38414349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated drug profiling and CRISPR screening identify BCR::ABL1-independent vulnerabilities in chronic myeloid leukemia.
    Adnan Awad S; Dufva O; Klievink J; Karjalainen E; Ianevski A; Pietarinen P; Kim D; Potdar S; Wolf M; Lotfi K; Aittokallio T; Wennerberg K; Porkka K; Mustjoki S
    Cell Rep Med; 2024 May; 5(5):101521. PubMed ID: 38653245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia.
    Zhang B; Nguyen LXT; Li L; Zhao D; Kumar B; Wu H; Lin A; Pellicano F; Hopcroft L; Su YL; Copland M; Holyoake TL; Kuo CJ; Bhatia R; Snyder DS; Ali H; Stein AS; Brewer C; Wang H; McDonald T; Swiderski P; Troadec E; Chen CC; Dorrance A; Pullarkat V; Yuan YC; Perrotti D; Carlesso N; Forman SJ; Kortylewski M; Kuo YH; Marcucci G
    Nat Med; 2018 May; 24(4):450-462. PubMed ID: 29505034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient disruption of bcr-abl gene by CRISPR RNA-guided FokI nucleases depresses the oncogenesis of chronic myeloid leukemia cells.
    Luo Z; Gao M; Huang N; Wang X; Yang Z; Yang H; Huang Z; Feng W
    J Exp Clin Cancer Res; 2019 May; 38(1):224. PubMed ID: 31138265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of tyrosine kinase inhibitors on a mouse chronic myeloid leukemia model and chronic myeloid leukemia stem cells.
    Tanaka Y; Fukushima T; Mikami K; Adachi K; Fukuyama T; Goyama S; Kitamura T
    Exp Hematol; 2020 Oct; 90():46-51.e2. PubMed ID: 32910995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-96 acts as a tumor suppressor via targeting the BCR-ABL1 oncogene in chronic myeloid leukemia blastic transformation.
    Huang T; Fu Y; Wang S; Xu M; Yin X; Zhou M; Wang X; Chen C
    Biomed Pharmacother; 2019 Nov; 119():109413. PubMed ID: 31518872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells.
    Neviani P; Harb JG; Oaks JJ; Santhanam R; Walker CJ; Ellis JJ; Ferenchak G; Dorrance AM; Paisie CA; Eiring AM; Ma Y; Mao HC; Zhang B; Wunderlich M; May PC; Sun C; Saddoughi SA; Bielawski J; Blum W; Klisovic RB; Solt JA; Byrd JC; Volinia S; Cortes J; Huettner CS; Koschmieder S; Holyoake TL; Devine S; Caligiuri MA; Croce CM; Garzon R; Ogretmen B; Arlinghaus RB; Chen CS; Bittman R; Hokland P; Roy DC; Milojkovic D; Apperley J; Goldman JM; Reid A; Mulloy JC; Bhatia R; Marcucci G; Perrotti D
    J Clin Invest; 2013 Oct; 123(10):4144-57. PubMed ID: 23999433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BCR-ABL1 mediated miR-150 downregulation through MYC contributed to myeloid differentiation block and drug resistance in chronic myeloid leukemia.
    Srutova K; Curik N; Burda P; Savvulidi F; Silvestri G; Trotta R; Klamova H; Pecherkova P; Sovova Z; Koblihova J; Stopka T; Perrotti D; Polakova KM
    Haematologica; 2018 Dec; 103(12):2016-2025. PubMed ID: 30049824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of key candidate targets and pathways for the targeted treatment of leukemia stem cells of chronic myelogenous leukemia using bioinformatics analysis.
    Li H; Liu L; Zhuang J; Liu C; Zhou C; Yang J; Gao C; Liu G; Sun C
    Mol Genet Genomic Med; 2019 Sep; 7(9):e851. PubMed ID: 31373443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic Myelogenous Leukemia- Initiating Cells Require Polycomb Group Protein EZH2.
    Xie H; Peng C; Huang J; Li BE; Kim W; Smith EC; Fujiwara Y; Qi J; Cheloni G; Das PP; Nguyen M; Li S; Bradner JE; Orkin SH
    Cancer Discov; 2016 Nov; 6(11):1237-1247. PubMed ID: 27630126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of CD25 as STAT5-Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML.
    Sadovnik I; Hoelbl-Kovacic A; Herrmann H; Eisenwort G; Cerny-Reiterer S; Warsch W; Hoermann G; Greiner G; Blatt K; Peter B; Stefanzl G; Berger D; Bilban M; Herndlhofer S; Sill H; Sperr WR; Streubel B; Mannhalter C; Holyoake TL; Sexl V; Valent P
    Clin Cancer Res; 2016 Apr; 22(8):2051-61. PubMed ID: 26607600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia.
    Zhang X; Ren R
    Blood; 1998 Nov; 92(10):3829-40. PubMed ID: 9808576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation.
    Woessner DW; Lim CS
    Mol Pharm; 2013 Jan; 10(1):270-7. PubMed ID: 23211037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthelmintic Niclosamide Disrupts the Interplay of p65 and FOXM1/β-catenin and Eradicates Leukemia Stem Cells in Chronic Myelogenous Leukemia.
    Jin B; Wang C; Li J; Du X; Ding K; Pan J
    Clin Cancer Res; 2017 Feb; 23(3):789-803. PubMed ID: 27492973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.