These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 34406044)

  • 1. Transversion Expansion of Base Editing.
    Nishida K; Kondo A
    CRISPR J; 2021 Aug; 4(4):462-463. PubMed ID: 34406044
    [No Abstract]   [Full Text] [Related]  

  • 2. Base Editing Landscape Extends to Perform Transversion Mutation.
    Molla KA; Qi Y; Karmakar S; Baig MJ
    Trends Genet; 2020 Dec; 36(12):899-901. PubMed ID: 32951947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Mediated Base Editing without DNA Double-Strand Breaks.
    Plosky BS
    Mol Cell; 2016 May; 62(4):477-8. PubMed ID: 27203175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing.
    Rabinowitz R; Abadi S; Almog S; Offen D
    Nucleic Acids Res; 2020 Jul; 48(W1):W340-W347. PubMed ID: 32255179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of cytosine base editors and development of the BEable-GPS database for targeting pathogenic SNVs.
    Wang Y; Gao R; Wu J; Xiong YC; Wei J; Zhang S; Yang B; Chen J; Yang L
    Genome Biol; 2019 Oct; 20(1):218. PubMed ID: 31647030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Base Editing Could Reverse Most Disease-Causing Point Mutations.
    Abbasi J
    JAMA; 2017 Dec; 318(22):2173. PubMed ID: 29234789
    [No Abstract]   [Full Text] [Related]  

  • 9. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects.
    Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H
    Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of CRISPR/Cas-mediated base editing for directed protein evolution in plants.
    Capdeville N; Schindele P; Puchta H
    Sci China Life Sci; 2020 Apr; 63(4):613-616. PubMed ID: 32146695
    [No Abstract]   [Full Text] [Related]  

  • 11. Efficient generation of the mouse model with a defined point mutation through haploid cell-mediated gene editing.
    Wei L; Wang X; Yang S; Yuan W; Li J
    J Genet Genomics; 2017 Sep; 44(9):461-463. PubMed ID: 28943147
    [No Abstract]   [Full Text] [Related]  

  • 12. Targeted Base Editing Systems Are Available for Plants.
    Marzec M; Hensel G
    Trends Plant Sci; 2018 Nov; 23(11):955-957. PubMed ID: 30224156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Standard Methodology to Examine On-site Mutagenicity As a Function of Point Mutation Repair Catalyzed by CRISPR/Cas9 and SsODN in Human Cells.
    Rivera-Torres N; Kmiec EB
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual base editor catalyzes both cytosine and adenine base conversions in human cells.
    Zhang X; Zhu B; Chen L; Xie L; Yu W; Wang Y; Li L; Yin S; Yang L; Hu H; Han H; Li Y; Wang L; Chen G; Ma X; Geng H; Huang W; Pang X; Yang Z; Wu Y; Siwko S; Kurita R; Nakamura Y; Yang L; Liu M; Li D
    Nat Biotechnol; 2020 Jul; 38(7):856-860. PubMed ID: 32483363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity Assessment of CRISPR Genome Editing of Oncogenic EGFR Point Mutation with Single-Base Differences.
    Bae T; Kim H; Kim JH; Kim YJ; Lee SH; Ham BJ; Hur JK
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31877894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences.
    Sretenovic S; Yin D; Levav A; Selengut JD; Mount SM; Qi Y
    Plant Commun; 2021 Mar; 2(2):100101. PubMed ID: 33898973
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Dandage R; Després PC; Yachie N; Landry CR
    Genetics; 2019 Jun; 212(2):377-385. PubMed ID: 30936113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.