BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34407240)

  • 1. Molecular mimicry between SARS-CoV-2 and the female reproductive system.
    Dotan A; Kanduc D; Muller S; Makatsariya A; Shoenfeld Y
    Am J Reprod Immunol; 2021 Dec; 86(6):e13494. PubMed ID: 34407240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins.
    Nunez-Castilla J; Stebliankin V; Baral P; Balbin CA; Sobhan M; Cickovski T; Mondal AM; Narasimhan G; Chapagain P; Mathee K; Siltberg-Liberles J
    Viruses; 2022 Jun; 14(7):. PubMed ID: 35891400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors.
    Petrenko VA; Gillespie JW; De Plano LM; Shokhen MA
    Viruses; 2022 Feb; 14(2):. PubMed ID: 35215976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SARS-CoV-2 spike protein displays sequence similarities with paramyxovirus surface proteins; a bioinformatics study.
    Ahmadi E; Zabihi MR; Hosseinzadeh R; Mohamed Khosroshahi L; Noorbakhsh F
    PLoS One; 2021; 16(12):e0260360. PubMed ID: 34855795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Anti-Severe Acute Respiratory Syndrome Coronavirus 2 Immune Response to Cancer Onset via Molecular Mimicry and Cross-Reactivity.
    Kanduc D
    Glob Med Genet; 2021 Dec; 8(4):176-182. PubMed ID: 34877576
    [No Abstract]   [Full Text] [Related]  

  • 6. Exposure to SARS-CoV-2 and Infantile Diseases.
    Kanduc D
    Glob Med Genet; 2023 Jun; 10(2):72-78. PubMed ID: 37144240
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular Mimicry between SARS-CoV-2 and Human Endocrinocytes: A Prerequisite of Post-COVID-19 Endocrine Autoimmunity?
    Churilov LP; Normatov MG; Utekhin VJ
    Pathophysiology; 2022 Aug; 29(3):486-494. PubMed ID: 36136066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins.
    Tajuelo A; López-Siles M; Más V; Pérez-Romero P; Aguado JM; Briz V; McConnell MJ; Martín-Galiano AJ; López D
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD8
    Qiu C; Xiao C; Wang Z; Zhu G; Mao L; Chen X; Gao L; Deng J; Su J; Su H; Fang EF; Zhang ZJ; Zhang J; Xie C; Yuan J; Luo OJ; Huang LA; Wang P; Chen G
    Front Immunol; 2021; 12():764949. PubMed ID: 35116022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein finds additional vaccine-induced epitopes beyond those for mild infection.
    Garrett ME; Galloway JG; Wolf C; Logue JK; Franko N; Chu HY; Matsen FA; Overbaugh JM
    Elife; 2022 Jan; 11():. PubMed ID: 35072628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SARS-CoV-2 and human retroelements: a case for molecular mimicry?
    Koch BF
    BMC Genom Data; 2022 Apr; 23(1):27. PubMed ID: 35395708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry.
    Kanduc D
    Antibodies (Basel); 2021 Sep; 10(4):. PubMed ID: 34698069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of evidence of significant homology of SARS-CoV-2 spike sequences to myocarditis-associated antigens.
    Marrama D; Mahita J; Sette A; Peters B
    EBioMedicine; 2022 Jan; 75():103807. PubMed ID: 34998242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry.
    Kanduc D
    Antibodies (Basel); 2020 Jul; 9(3):. PubMed ID: 32708525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2.
    Chen HZ; Tang LL; Yu XL; Zhou J; Chang YF; Wu X
    Infect Dis Poverty; 2020 Jul; 9(1):88. PubMed ID: 32741372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases.
    Vojdani A; Vojdani E; Kharrazian D
    Front Immunol; 2020; 11():617089. PubMed ID: 33584709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-Neutralization of Emerging SARS-CoV-2 Variants of Concern by Antibodies Targeting Distinct Epitopes on Spike.
    Changrob S; Fu Y; Guthmiller JJ; Halfmann PJ; Li L; Stamper CT; Dugan HL; Accola M; Rehrauer W; Zheng NY; Huang M; Wang J; Erickson SA; Utset HA; Graves HM; Amanat F; Sather DN; Krammer F; Kawaoka Y; Wilson PC
    mBio; 2021 Dec; 12(6):e0297521. PubMed ID: 34781736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is Molecular Mimicry between hPF4 and SARS-CoV-2 Spike Protein a Potential Basis for Autoimmune Responses in Vaccinated and Naturally Infected Patients?
    Carnevale S; Giovanetti M; Benvenuto D; Ciccozzi M; Broccolo F
    Semin Thromb Hemost; 2023 Feb; 49(1):103-104. PubMed ID: 35021248
    [No Abstract]   [Full Text] [Related]  

  • 19. Using bioinformatic protein sequence similarity to investigate if SARS CoV-2 infection could cause an ocular autoimmune inflammatory reactions?
    Karagöz IK; Munk MR; Kaya M; Rückert R; Yıldırım M; Karabaş L
    Exp Eye Res; 2021 Feb; 203():108433. PubMed ID: 33400927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a promiscuous conserved CTL epitope within the SARS-CoV-2 spike protein.
    Jiang S; Wu S; Zhao G; He Y; Guo X; Zhang Z; Hou J; Ding Y; Cheng A; Wang B
    Emerg Microbes Infect; 2022 Dec; 11(1):730-740. PubMed ID: 35171086
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.