These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34407269)

  • 1. Machine learning-enabled multitrust audit of stroke comorbidities using natural language processing.
    Shek A; Jiang Z; Teo J; Au Yeung J; Bhalla A; Richardson MP; Mah Y
    Eur J Neurol; 2021 Dec; 28(12):4090-4097. PubMed ID: 34407269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation.
    Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB
    J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: A Machine Learning Analysis.
    Han L; Askari M; Altman RB; Schmitt SK; Fan J; Bentley JP; Narayan SM; Turakhia MP
    Circ Cardiovasc Qual Outcomes; 2019 Oct; 12(10):e005595. PubMed ID: 31610712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stroke Outcome Measurements From Electronic Medical Records: Cross-sectional Study on the Effectiveness of Neural and Nonneural Classifiers.
    Zanotto BS; Beck da Silva Etges AP; Dal Bosco A; Cortes EG; Ruschel R; De Souza AC; Andrade CMV; Viegas F; Canuto S; Luiz W; Ouriques Martins S; Vieira R; Polanczyk C; André Gonçalves M
    JMIR Med Inform; 2021 Nov; 9(11):e29120. PubMed ID: 34723829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.
    Garg R; Oh E; Naidech A; Kording K; Prabhakaran S
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records.
    Carson NJ; Mullin B; Sanchez MJ; Lu F; Yang K; Menezes M; Cook BL
    PLoS One; 2019; 14(2):e0211116. PubMed ID: 30779800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?
    Siontis KC; Yao X; Pirruccello JP; Philippakis AA; Noseworthy PA
    Circ Res; 2020 Jun; 127(1):155-169. PubMed ID: 32833571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for rapid machine learning development for data mining with doctor-in-the-loop.
    Bull NJ; Honan B; Spratt NJ; Quilty S
    PLoS One; 2023; 18(5):e0284965. PubMed ID: 37163511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risks of atrial fibrillation and death at discharge after thrombolysis in stroke patients: Northumbrian Sentinel Stroke Audit, 2013-2015.
    Shiue I
    Acta Neurol Scand; 2017 Feb; 135(2):257-262. PubMed ID: 27072413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Machine Learning to Capture Quality Metrics from Natural Language: A Case Study of Diabetic Eye Exams.
    Fong A; Scoulios N; Blumenthal HJ; Anderson RE
    Methods Inf Med; 2021 Sep; 60(3-04):110-115. PubMed ID: 34598298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk prediction of clinical adverse outcomes with machine learning in a cohort of critically ill patients with atrial fibrillation.
    Falsetti L; Rucco M; Proietti M; Viticchi G; Zaccone V; Scarponi M; Giovenali L; Moroncini G; Nitti C; Salvi A
    Sci Rep; 2021 Sep; 11(1):18925. PubMed ID: 34556682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using machine learning to predict atrial fibrillation diagnosed after ischemic stroke.
    Zheng X; Wang F; Zhang J; Cui X; Jiang F; Chen N; Zhou J; Chen J; Lin S; Zou J
    Int J Cardiol; 2022 Jan; 347():21-27. PubMed ID: 34774886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing stroke severity using electronic health record data: a machine learning approach.
    Kogan E; Twyman K; Heap J; Milentijevic D; Lin JH; Alberts M
    BMC Med Inform Decis Mak; 2020 Jan; 20(1):8. PubMed ID: 31914991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter.
    Sarker A; Gonzalez-Hernandez G; Ruan Y; Perrone J
    JAMA Netw Open; 2019 Nov; 2(11):e1914672. PubMed ID: 31693125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes.
    Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ
    J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study.
    Maarseveen TD; Meinderink T; Reinders MJT; Knitza J; Huizinga TWJ; Kleyer A; Simon D; van den Akker EB; Knevel R
    JMIR Med Inform; 2020 Nov; 8(11):e23930. PubMed ID: 33252349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.