These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34407513)

  • 1. Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for
    Jokisaari JR; Hu X; Mukherjee A; Uskoković V; Klie RF
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34407513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens.
    Cho H; Jones MR; Nguyen SC; Hauwiller MR; Zettl A; Alivisatos AP
    Nano Lett; 2017 Jan; 17(1):414-420. PubMed ID: 28026186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of water presence in graphene liquid cells.
    Keskin S; Pawell C; de Jonge N
    Micron; 2021 Oct; 149():103109. PubMed ID: 34332298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives.
    Park J; Koo K; Noh N; Chang JH; Cheong JY; Dae KS; Park JS; Ji S; Kim ID; Yuk JM
    ACS Nano; 2021 Jan; 15(1):288-308. PubMed ID: 33395264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy.
    Park J; Park H; Ercius P; Pegoraro AF; Xu C; Kim JW; Han SH; Weitz DA
    Nano Lett; 2015 Jul; 15(7):4737-44. PubMed ID: 26065925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility of hydroxyapatite by solid titration at pH 3-4.
    Pan HB; Darvell BW
    Arch Oral Biol; 2007 Jul; 52(7):618-24. PubMed ID: 17240349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Graphene Liquid Cells for the Observation of Lithium-ion Battery Material.
    Chang JH; Cheong JY; Seo HK; Kim ID; Yuk JM
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy.
    Hauwiller MR; Ondry JC; Chan CM; Khandekar P; Yu J; Alivisatos AP
    J Am Chem Soc; 2019 Mar; 141(10):4428-4437. PubMed ID: 30777753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy.
    Yang J; Alam SB; Yu L; Chan E; Zheng H
    Micron; 2019 Jan; 116():22-29. PubMed ID: 30265880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble and pattern formation in liquid induced by an electron beam.
    Grogan JM; Schneider NM; Ross FM; Bau HH
    Nano Lett; 2014 Jan; 14(1):359-64. PubMed ID: 24299122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micrometer-Scale Graphene-Based Liquid Cells of Highly Concentrated Salt Solutions for In Situ Liquid-Cell Transmission Electron Microscopy.
    Yashima Y; Yamazaki T; Kimura Y
    ACS Omega; 2024 Sep; 9(38):39914-39924. PubMed ID: 39346859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End-to-end image analysis pipeline for liquid-phase electron microscopy.
    Marchello G; DE Pace C; Duro-Castano A; Battaglia G; Ruiz-PÉrez L
    J Microsc; 2020 Sep; 279(3):242-248. PubMed ID: 32157689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time TEM observations of ice formation in graphene liquid cell.
    Phakatkar AH; Megaridis CM; Shokuhfar T; Shahbazian-Yassar R
    Nanoscale; 2023 Apr; 15(15):7006-7013. PubMed ID: 36946122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Study of Molecular Structure of Water and Ice Entrapped in Graphene Nanovessels.
    Ghodsi SM; Anand S; Shahbazian-Yassar R; Shokuhfar T; Megaridis CM
    ACS Nano; 2019 Apr; 13(4):4677-4685. PubMed ID: 30908009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ syntheses of hydroxyapatite-grafted graphene oxide composites.
    Iacoboni I; Perrozzi F; Macera L; Taglieri G; Ottaviano L; Fioravanti G
    J Biomed Mater Res A; 2019 Sep; 107(9):2026-2039. PubMed ID: 31077552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Crystallization of Fluorapatite in the Presence of Hydroxyapatite Seeds and of Hydroxyapatite in the Presence of Fluorapatite Seeds.
    Liu Y; Sethuraman G; Wu W; Nancollas GH; Grynpas M
    J Colloid Interface Sci; 1997 Feb; 186(1):102-9. PubMed ID: 9056310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Na2HPO4 and NaH2PO4 on hydroxyapatite formation.
    Fulmer MT; Brown PW
    J Biomed Mater Res; 1993 Aug; 27(8):1095-102. PubMed ID: 8408122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect.
    Li C; Ge X; Li G; Lu H; Ding R
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():191-5. PubMed ID: 25491819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Bubble Dynamics Induced by Damage of Graphene Liquid Cells.
    Hirokawa S; Teshima H; Solís-Fernández P; Ago H; Tomo Y; Li QY; Takahashi K
    ACS Omega; 2020 May; 5(19):11180-11185. PubMed ID: 32455241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiolysis-Induced Crystallization of Sodium Chloride in Acetone by Electron Beam Irradiation.
    Yamazaki T; Kimura Y
    Microsc Microanal; 2021 Mar; ():1-7. PubMed ID: 33745494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.