These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34407565)

  • 1. Prediction of
    Gerrard W; Yiu C; Butts CP
    Magn Reson Chem; 2022 Nov; 60(11):1087-1092. PubMed ID: 34407565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General Protocol for the Accurate Prediction of Molecular
    Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA
    J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids.
    Cordova M; Engel EA; Stefaniuk A; Paruzzo F; Hofstetter A; Ceriotti M; Emsley L
    J Phys Chem C Nanomater Interfaces; 2022 Oct; 126(39):16710-16720. PubMed ID: 36237276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMPRESSION - prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy.
    Gerrard W; Bratholm LA; Packer MJ; Mulholland AJ; Glowacki DR; Butts CP
    Chem Sci; 2020 Jan; 11(2):508-515. PubMed ID: 32190270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning.
    Unzueta PA; Greenwell CS; Beran GJO
    J Chem Theory Comput; 2021 Feb; 17(2):826-840. PubMed ID: 33428408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time prediction of
    Guan Y; Shree Sowndarya SV; Gallegos LC; St John PC; Paton RS
    Chem Sci; 2021 Sep; 12(36):12012-12026. PubMed ID: 34667567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost.
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):222-30. PubMed ID: 24573615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between 15N NMR chemical shifts in proteins and secondary structure.
    Le H; Oldfield E
    J Biomol NMR; 1994 May; 4(3):341-8. PubMed ID: 8019141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolite Structure Assignment Using In Silico NMR Techniques.
    Das S; Edison AS; Merz KM
    Anal Chem; 2020 Aug; 92(15):10412-10419. PubMed ID: 32608974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2020 Jun; 58(6):532-539. PubMed ID: 31663170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-Dependent Structures of Natural Products Based on the Combined Use of DFT Calculations and
    Mari SH; Varras PC; ; Choudhary IM; Siskos MG; Gerothanassis IP
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31226776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.
    Rorick A; Michael MA; Yang L; Zhang Y
    J Phys Chem B; 2015 Sep; 119(35):11618-25. PubMed ID: 26274812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal fluctuation and conformational effects on NMR parameters in β-O-4 lignin dimers from QM/MM and machine-learning approaches.
    Aguilera-Segura SM; Dragún D; Gaumard R; Di Renzo F; Ondík IM; Mineva T
    Phys Chem Chem Phys; 2022 Apr; 24(15):8820-8831. PubMed ID: 35352736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiently Computing NMR
    Palivec V; Pohl R; Kaminský J; Martinez-Seara H
    J Chem Theory Comput; 2022 Jul; 18(7):4373-4386. PubMed ID: 35687789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of
    Ksenofontov AA; Isaev YI; Lukanov MM; Makarov DM; Eventova VA; Khodov IA; Berezin MB
    Phys Chem Chem Phys; 2023 Mar; 25(13):9472-9481. PubMed ID: 36935644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of the pi-electron conjugation on (15)N, (13)C and (1)H NMR chemical shifts in push-pull benzothiazolium salts. Experimental and theoretical study.
    Hrobárik P; Horváth B; Sigmundová I; Zahradník P; Malkina OL
    Magn Reson Chem; 2007 Nov; 45(11):942-53. PubMed ID: 17924356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic investigation of DFT-GIAO
    Xin D; Sader CA; Fischer U; Wagner K; Jones PJ; Xing M; Fandrick KR; Gonnella NC
    Org Biomol Chem; 2017 Jan; 15(4):928-936. PubMed ID: 28050610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.