BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34407718)

  • 1. New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing.
    Li X; Fan L; Liu Y; Li J
    Crit Rev Food Sci Nutr; 2023; 63(11):1564-1586. PubMed ID: 34407718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in 3D printing properties of natural food gels: Application of innovative food additives.
    Sharma R; Chandra Nath P; Kumar Hazarika T; Ojha A; Kumar Nayak P; Sridhar K
    Food Chem; 2024 Jan; 432():137196. PubMed ID: 37659329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of anthocyanin-rich W
    Li J; Guo C; Cai S; Yi J; Zhou L
    Food Res Int; 2023 Jun; 168():112782. PubMed ID: 37120230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of fat-reduced water-in-oil emulsion and the application in 3D printing.
    Wang M; Zhang J; Fan L; Li J
    Food Res Int; 2023 Oct; 172():113118. PubMed ID: 37689880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences of wax-based emulsion gel in 3D printing performance: Crystal distribution and droplet stability.
    Gu X; Cui L; Meng Z
    Food Chem; 2023 Dec; 428():136760. PubMed ID: 37402346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological property, β-carotene stability and 3D printing characteristic of whey protein isolate emulsion gels by adding different polysaccharides.
    Li M; Feng L; Xu Y; Nie M; Li D; Zhou C; Dai Z; Zhang Z; Zhang M
    Food Chem; 2023 Jul; 414():135702. PubMed ID: 36821919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Antioxidative Pickering Emulsion Gel through Polyphenol-Inspired Free-Radical Grafting of Microcrystalline Cellulose for 3D Food Printing.
    Shahbazi M; Jäger H; Ettelaie R
    Biomacromolecules; 2021 Nov; 22(11):4592-4605. PubMed ID: 34597024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printing of solid lipid tablets from emulsion gels.
    Johannesson J; Khan J; Hubert M; Teleki A; Bergström CAS
    Int J Pharm; 2021 Mar; 597():120304. PubMed ID: 33540029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry.
    Yang W; Tu A; Ma Y; Li Z; Xu J; Lin M; Zhang K; Jing L; Fu C; Jiao Y; Huang L
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterization of emulsion gels prepared via gliadin-based colloidal particles and gellan gum with tunable rheological properties for 3D printed dysphagia diet.
    Hou Y; Sun Y; Zhang P; Wang H; Tan M
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126839. PubMed ID: 37696376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties.
    Riantiningtyas RR; Sager VF; Chow CY; Thybo CD; Bredie WLP; Ahrné L
    Food Res Int; 2021 Sep; 147():110517. PubMed ID: 34399495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S; Ajdary R; Bai L; Klar V; Rojas OJ
    Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing.
    Shahbazi M; Jäger H; Ettelaie R
    ACS Appl Mater Interfaces; 2022 May; 14(18):21392-21405. PubMed ID: 35476424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review.
    Hu X; Jiang Q; Du L; Meng Z
    Carbohydr Polym; 2023 Dec; 322():121328. PubMed ID: 37839840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Promising Therapeutic Soy-Based Pickering Emulsion Gel Stabilized by a Multifunctional Microcrystalline Cellulose: Application in 3D Food Printing.
    Shahbazi M; Jäger H; Ettelaie R
    J Agric Food Chem; 2022 Feb; 70(7):2374-2388. PubMed ID: 35143723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application.
    He X; Lu Q
    Adv Colloid Interface Sci; 2024 Feb; 324():103086. PubMed ID: 38244533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing.
    Sager VF; Munk MB; Hansen MS; Bredie WLP; Ahrné L
    Foods; 2020 Dec; 10(1):. PubMed ID: 33375171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in preparation and application of food-grade emulsion gels.
    Zhi L; Liu Z; Wu C; Ma X; Hu H; Liu H; Adhikari B; Wang Q; Shi A
    Food Chem; 2023 Oct; 424():136399. PubMed ID: 37245468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.