These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34407929)

  • 1. Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides.
    Li J; Shen C; Huang TJ; Cummer SA
    Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34407929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional manipulation of single cells using surface acoustic waves.
    Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.
    Bian Y; Guo F; Yang S; Mao Z; Bachman H; Tang SY; Ren L; Zhang B; Gong J; Guo X; Huang TJ
    Microfluid Nanofluidics; 2017 Aug; 21():. PubMed ID: 29358901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.
    Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y
    Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined acoustic and optical trapping.
    Thalhammer G; Steiger R; Meinschad M; Hill M; Bernet S; Ritsch-Marte M
    Biomed Opt Express; 2011 Oct; 2(10):2859-70. PubMed ID: 22025990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-particle trapping and manipulation by a high-frequency array transducer.
    Yoon C; Kang BJ; Lee C; Kim HH; Shung KK
    Appl Phys Lett; 2014 Nov; 105(21):214103. PubMed ID: 25489120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
    Ye F; Badman RP; Inman JT; Soltani M; Killian JL; Wang MD
    Nano Lett; 2016 Oct; 16(10):6661-6667. PubMed ID: 27689302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration.
    Loozen GB; Karuna A; Fanood MMR; Schreuder E; Caro J
    Beilstein J Nanotechnol; 2020; 11():829-842. PubMed ID: 32551208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From rectangular to diamond shape: on the three-dimensional and size-dependent transformation of patterns formed by single particles trapped in microfluidic acoustic tweezers.
    Deng Z; Kondalkar VV; Cierpka C; Schmidt H; König J
    Lab Chip; 2023 May; 23(9):2154-2160. PubMed ID: 37013801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface transport and stable trapping of particles and cells by an optical waveguide loop.
    Hellesø OG; Løvhaugen P; Subramanian AZ; Wilkinson JS; Ahluwalia BS
    Lab Chip; 2012 Sep; 12(18):3436-40. PubMed ID: 22814473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrally reconfigurable integrated multi-spot particle trap.
    Leake KD; Olson MA; Ozcelik D; Hawkins AR; Schmidt H
    Opt Lett; 2015 Dec; 40(23):5435-8. PubMed ID: 26625019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells.
    Tian Z; Yang S; Huang PH; Wang Z; Zhang P; Gu Y; Bachman H; Chen C; Wu M; Xie Y; Huang TJ
    Sci Adv; 2019 May; 5(5):eaau6062. PubMed ID: 31172021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Beam Acoustic Tweezer Prepared by Lead-Free KNN-Based Textured Ceramics.
    Quan Y; Fei C; Ren W; Wang L; Zhao J; Zhuang J; Zhao T; Li Z; Zheng C; Sun X; Zheng K; Wang Z; Ren MX; Niu G; Zhang N; Karaki T; Jiang Z; Wen L
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rib waveguides for trapping and transport of particles.
    Ahluwalia BS; Helle ØI; Hellesø OG
    Opt Express; 2016 Mar; 24(5):4477-4487. PubMed ID: 29092275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of microparticles using phase-controllable ultrasonic standing waves.
    Courtney CR; Ong CK; Drinkwater BW; Wilcox PD; Demore C; Cochran S; Glynne-Jones P; Hill M
    J Acoust Soc Am; 2010 Oct; 128(4):EL195-9. PubMed ID: 20968325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation.
    Li T; Li J; Bo L; Bachman H; Fan B; Cheng J; Tian Z
    Sci Adv; 2024 May; 10(21):eadm7698. PubMed ID: 38787945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Chip Arbitrary Manipulation of Single Particles by Acoustic Resonator Array.
    You R; Wu H; Pang W; Duan X
    Anal Chem; 2022 Apr; 94(13):5392-5398. PubMed ID: 35319870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary wave tweezer.
    Orme B; Torun H; Unthank M; Fu YQ; Ford B; Agrawal P
    Sci Rep; 2024 May; 14(1):12448. PubMed ID: 38816398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.