BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34407984)

  • 1. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi.
    Jensen TI; Mikkelsen NS; Gao Z; Foßelteder J; Pabst G; Axelgaard E; Laustsen A; König S; Reinisch A; Bak RO
    Genome Res; 2021 Nov; 31(11):2120-2130. PubMed ID: 34407984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica.
    Misa J; Schwartz C
    Methods Mol Biol; 2021; 2307():95-109. PubMed ID: 33847984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
    Bendixen L; Jensen TI; Bak RO
    Mol Ther; 2023 Jul; 31(7):1920-1937. PubMed ID: 36964659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System.
    Martella A; Firth M; Taylor BJM; Göppert A; Cuomo EM; Roth RG; Dickson AJ; Fisher DI
    ACS Synth Biol; 2019 Sep; 8(9):1998-2006. PubMed ID: 31398008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells.
    Hazelbaker DZ; Beccard A; Angelini G; Mazzucato P; Messana A; Lam D; Eggan K; Barrett LE
    Sci Rep; 2020 Jan; 10(1):635. PubMed ID: 31959800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine.
    Kampmann M
    ACS Chem Biol; 2018 Feb; 13(2):406-416. PubMed ID: 29035510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR technologies for stem cell engineering and regenerative medicine.
    Hsu MN; Chang YH; Truong VA; Lai PL; Nguyen TKN; Hu YC
    Biotechnol Adv; 2019 Dec; 37(8):107447. PubMed ID: 31513841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Modification of Guide RNAs for Improved CRISPR Activity in CD34+ Human Hematopoietic Stem and Progenitor Cells.
    Shapiro J; Tovin A; Iancu O; Allen D; Hendel A
    Methods Mol Biol; 2021; 2162():37-48. PubMed ID: 32926376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-mediated transcriptional activation with synthetic guide RNA.
    Strezoska Ž; Dickerson SM; Maksimova E; Chou E; Gross MM; Hemphill K; Hardcastle T; Perkett M; Stombaugh J; Miller GW; Anderson EM; Vermeulen A; Smith AVB
    J Biotechnol; 2020 Aug; 319():25-35. PubMed ID: 32470463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating Gene Expression in Epstein-Barr Virus (EBV)-Positive B Cell Lines with CRISPRa and CRISPRi.
    Wang LW; Trudeau SJ; Wang C; Gerdt C; Jiang S; Zhao B; Gewurz BE
    Curr Protoc Mol Biol; 2018 Jan; 121():31.13.1-31.13.18. PubMed ID: 29337370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/dCas system as the modulator of gene expression.
    Kazi TA; Biswas SR
    Prog Mol Biol Transl Sci; 2021; 178():99-122. PubMed ID: 33685602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward tunable dynamic repression using CRISPRi.
    Jang S; Jang S; Jung GY
    Biotechnol J; 2018 Sep; 13(9):e1800152. PubMed ID: 29714047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic lncRNA Network.
    Morelli E; Gulla' A; Amodio N; Taiana E; Neri A; Fulciniti M; Munshi NC
    Methods Mol Biol; 2021; 2348():189-204. PubMed ID: 34160808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation.
    Horlbeck MA; Gilbert LA; Villalta JE; Adamson B; Pak RA; Chen Y; Fields AP; Park CY; Corn JE; Kampmann M; Weissman JS
    Elife; 2016 Sep; 5():. PubMed ID: 27661255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria.
    Liu Y; Wan X; Wang B
    Nat Commun; 2019 Aug; 10(1):3693. PubMed ID: 31451697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
    Bloomer H; Smith RH; Hakami W; Larochelle A
    Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation by CRISPR/dCas9 in common wheat.
    Zhou H; Xu L; Li F; Li Y
    Gene; 2022 Jan; 807():145919. PubMed ID: 34454034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.