These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34408174)

  • 1. Characterization and clinical implications of ankle impedance during walking in chronic stroke.
    Shorter AL; Richardson JK; Finucane SB; Joshi V; Gordon K; Rouse EJ
    Sci Rep; 2021 Aug; 11(1):16726. PubMed ID: 34408174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ankle Mechanical Impedance During Waling in Chronic Stroke: Preliminary Results.
    Shorter AL; Finucane S; Rouse EJ
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():246-251. PubMed ID: 31374637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of walking with loads above the ankle on gait parameters of persons with hemiparesis after stroke.
    Duclos C; Nadeau S; Bourgeois N; Bouyer L; Richards CL
    Clin Biomech (Bristol); 2014 Mar; 29(3):265-71. PubMed ID: 24405568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle and reflex changes with varying joint angle in hemiparetic stroke.
    Mirbagheri MM; Alibiglou L; Thajchayapong M; Rymer WZ
    J Neuroeng Rehabil; 2008 Feb; 5():6. PubMed ID: 18304313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke.
    Awad LN; Hsiao H; Binder-Macleod SA
    J Neurol Phys Ther; 2020 Jan; 44(1):42-48. PubMed ID: 31834220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle Mechanical Impedance During the Stance Phase of Running.
    Shorter AL; Rouse EJ
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1595-1603. PubMed ID: 31514123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke.
    Burpee JL; Lewek MD
    Clin Biomech (Bristol); 2015 Dec; 30(10):1102-7. PubMed ID: 26371855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of passive Bi-axial ankle stretching while walking on uneven terrains in older adults with chronic stroke.
    Kim H; Cho S; Lee H
    J Biomech; 2019 May; 89():57-64. PubMed ID: 31060809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of muscle tone on ankle kinetics during gait with ankle-foot orthoses in persons with stroke.
    Mizuno S; Sonoda S; Takeda K; Maeshima S
    Top Stroke Rehabil; 2017 Dec; 24(8):567-572. PubMed ID: 28945975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ankle stiffness modulation during different gait speeds in individuals post-stroke.
    Hinton EH; Likens A; Hsiao HY; Binder-Markey BI; Binder-Macleod SA; Knarr BA
    Clin Biomech (Bristol); 2022 Oct; 99():105761. PubMed ID: 36099707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensive seated robotic training of the ankle in patients with chronic stroke differentially improves gait.
    Chang JL; Lin RY; Saul M; Koch PJ; Krebs HI; Volpe BT
    NeuroRehabilitation; 2017; 41(1):61-68. PubMed ID: 28505988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontal plane compensatory strategies associated with self-selected walking speed in individuals post-stroke.
    Stanhope VA; Knarr BA; Reisman DS; Higginson JS
    Clin Biomech (Bristol); 2014 May; 29(5):518-22. PubMed ID: 24768223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability and minimal detectable change of stiffness and other mechanical properties of the ankle joint in standing and walking.
    Cubillos LH; Rouse EJ; Augenstein TE; Joshi V; Claflin ES; Krishnan C
    Gait Posture; 2024 Feb; 108():56-62. PubMed ID: 37988887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-varying and speed-matched model for the evaluation of stroke-induced changes in ankle mechanics.
    Lyu Y; Xie K; Shan X; Leng Y; Li L; Zhang X; Song R
    J Biomech; 2024 Mar; 165():111997. PubMed ID: 38377742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of an articulated ankle-foot orthosis with resistance-adjustable joints on lower limb joint kinematics and kinetics during gait in individuals post-stroke.
    Kobayashi T; Orendurff MS; Hunt G; Gao F; LeCursi N; Lincoln LS; Foreman KB
    Clin Biomech (Bristol); 2018 Nov; 59():47-55. PubMed ID: 30145413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Summary of Human Ankle Mechanical Impedance During Walking.
    Lee H; Rouse EJ; Krebs HI
    IEEE J Transl Eng Health Med; 2016; 4():2100407. PubMed ID: 27766187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ; Lewek MD; Sawicki GS
    J Neuroeng Rehabil; 2015 Feb; 12():23. PubMed ID: 25889283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):51-6. PubMed ID: 15996592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.