These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 34409546)

  • 21. Spaceflight validation of technology for point-of-care monitoring of peripheral blood WBC and differential in astronauts during space missions.
    Crucian B; Valentine R; Calaway K; Miller R; Rubins K; Hopkins M; Salas Z; Krieger S; Makedonas G; Nelman-Gonzalez M; McMonigal K; Perusek G; Lehnhardt K; Easter B
    Life Sci Space Res (Amst); 2021 Nov; 31():29-33. PubMed ID: 34689947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction.
    Hughes L; Hackney KJ; Patterson SD
    Aerosp Med Hum Perform; 2022 Jan; 93(1):32-45. PubMed ID: 35063054
    [No Abstract]   [Full Text] [Related]  

  • 23. Neuropsychological considerations for long-duration deep spaceflight.
    Faerman A; Clark JB; Sutton JP
    Front Physiol; 2023; 14():1146096. PubMed ID: 37275233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deviance among expeditioners: defining the off-nominal act through space and polar field analogs.
    Dudley-Rowley M
    Hum Perf Extrem Environ; 1997 Jun; 2(1):119-27. PubMed ID: 12190060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selecting Medical Conditions Relevant to Exploration Spaceflight to Create the IMPACT 1.0 Medical Condition List.
    Kreykes AJ; Suresh R; Levin D; Hilmers DC
    Aerosp Med Hum Perform; 2023 Jul; 94(7):550-557. PubMed ID: 37349929
    [No Abstract]   [Full Text] [Related]  

  • 26. Arterial structure and function during and after long-duration spaceflight.
    Lee SMC; Ribeiro LC; Martin DS; Zwart SR; Feiveson AH; Laurie SS; Macias BR; Crucian BE; Krieger S; Weber D; Grune T; Platts SH; Smith SM; Stenger MB
    J Appl Physiol (1985); 2020 Jul; 129(1):108-123. PubMed ID: 32525433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cognition in zero gravity: Effects of non-terrestrial gravity on human behaviour.
    Arshad I; Ferré ER
    Q J Exp Psychol (Hove); 2023 May; 76(5):979-994. PubMed ID: 35786100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cognitive Performance During Confinement and Sleep Restriction in NASA's Human Exploration Research Analog (HERA).
    Nasrini J; Hermosillo E; Dinges DF; Moore TM; Gur RC; Basner M
    Front Physiol; 2020; 11():394. PubMed ID: 32411017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gynecologic Risk Mitigation Considerations for Long-Duration Spaceflight.
    Steller JG; Blue RS; Burns R; Bayuse TM; Antonsen EL; Jain V; Blackwell MM; Jennings RT
    Aerosp Med Hum Perform; 2020 Jul; 91(7):543-564. PubMed ID: 32591031
    [No Abstract]   [Full Text] [Related]  

  • 30. Human space exploration the next fifty years.
    Williams DR; Turnock M
    Mcgill J Med; 2011 Jun; 13(2):76. PubMed ID: 22363199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human cognitive performance in spaceflight and analogue environments.
    Strangman GE; Sipes W; Beven G
    Aviat Space Environ Med; 2014 Oct; 85(10):1033-48. PubMed ID: 25245904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NASA's human system risk management approach and its applicability to commercial spaceflight.
    Law J; Mathers CH; Fondy SR; Vanderploeg JM; Kerstman EL
    Aviat Space Environ Med; 2013 Jan; 84(1):68-73. PubMed ID: 23305003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonhuman primate models in the study of spaceflight stressors: Past contributions and future directions.
    Desai RI; Kangas BD; Limoli CL
    Life Sci Space Res (Amst); 2021 Aug; 30():9-23. PubMed ID: 34281669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biohazard potential of putative Martian organisms during missions to Mars.
    Warmflash D; Larios-Sanz M; Jones J; Fox GE; McKay DS
    Aviat Space Environ Med; 2007 Apr; 78(4 Suppl):A79-88. PubMed ID: 17511302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can the Biophilia Hypothesis Be Applied to Long-Duration Human Space Flight? A Mini-Review.
    Neilson BN; Craig CM; Altman GC; Travis AT; Vance JA; Klein MI
    Front Psychol; 2021; 12():703766. PubMed ID: 34566783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spaceflight-Associated Changes in the Opacification of the Paranasal Sinuses and Mastoid Air Cells in Astronauts.
    Inglesby DC; Antonucci MU; Spampinato MV; Collins HR; Meyer TA; Schlosser RJ; Shimada K; Roberts DR
    JAMA Otolaryngol Head Neck Surg; 2020 Jun; 146(6):571-577. PubMed ID: 32215610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain Physiological Response and Adaptation During Spaceflight.
    Marshall-Goebel K; Damani R; Bershad EM
    Neurosurgery; 2019 Nov; 85(5):E815-E821. PubMed ID: 31215633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges.
    Romanella SM; Sprugnoli G; Ruffini G; Seyedmadani K; Rossi S; Santarnecchi E
    Neurosci Biobehav Rev; 2020 Dec; 119():294-319. PubMed ID: 32937115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ad Astra - telomeres in space!
    Bailey SM; Luxton JJ; McKenna MJ; Taylor LE; George KA; Jhavar SG; Swanson GP
    Int J Radiat Biol; 2022; 98(3):395-403. PubMed ID: 34270368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Meditations on the new space vision: the Moon as a stepping stone to Mars.
    Mendell WW
    Acta Astronaut; 2005; 57(2-8):676-83. PubMed ID: 16010766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.