These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34409621)

  • 1. Time-resolved particle image velocimetry analysis and computational modeling of transient optically induced electrothermal micro vortex.
    Gupta K; Chen Z; Williams SJ; Wereley ST
    Electrophoresis; 2021 Dec; 42(23):2483-2489. PubMed ID: 34409621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force and Velocity Analysis of Particles Manipulated by Toroidal Vortex on Optoelectrokinetic Microfluidic Platform.
    Zhang SJ; Yang ZR; Kuo JN
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically induced electrothermal microfluidic tweezers in bio-relevant media.
    Gupta K; Moon HR; Chen Z; Han B; Green NG; Wereley ST
    Sci Rep; 2023 Jun; 13(1):9819. PubMed ID: 37330519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic concentration and patterning of colloids with a scanning laser.
    Velasco V; Work AH; Williams SJ
    Electrophoresis; 2012 Jul; 33(13):1931-7. PubMed ID: 22806457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoelectric patterning: Effect of electrode material and thickness on laser-induced AC electrothermal flow.
    Mishra A; Khor JW; Clayton KN; Williams SJ; Pan X; Kinzer-Ursem T; Wereley S
    Electrophoresis; 2016 Feb; 37(4):658-65. PubMed ID: 26613811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic patterning of colloidal particles with optical landscapes.
    Williams SJ; Kumar A; Wereley ST
    Lab Chip; 2008 Nov; 8(11):1879-82. PubMed ID: 18941688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping and viability of swimming bacteria in an optoelectric trap.
    Mishra A; Maltais TR; Walter TM; Wei A; Williams SJ; Wereley ST
    Lab Chip; 2016 Mar; 16(6):1039-46. PubMed ID: 26891971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow.
    Liu W; Ren Y; Tao Y; Yao B; Li Y
    Electrophoresis; 2018 Mar; 39(5-6):779-793. PubMed ID: 28873212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of 2D colloid aggregations created by optically induced electrohydrodynamics.
    Work AH; Williams SJ
    Electrophoresis; 2015 Aug; 36(15):1674-80. PubMed ID: 26013358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles.
    Williams SJ; Kumar A; Green NG; Wereley ST
    Nanoscale; 2009 Oct; 1(1):133-7. PubMed ID: 20644872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of 2D colloids assembled by optically-induced electrohydrodynamics.
    Work AH; Williams SJ
    Soft Matter; 2015 Jun; 11(21):4266-72. PubMed ID: 25899138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface.
    Kumar A; Kwon JS; Williams SJ; Green NG; Yip NK; Wereley ST
    Langmuir; 2010 Apr; 26(7):5262-72. PubMed ID: 20232836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range electrothermal fluid motion in microfluidic systems.
    Lu Y; Ren Q; Liu T; Leung SL; Gau V; Liao JC; Chan CL; Wong PK
    Int J Heat Mass Transf; 2016 Jul; 98():341-349. PubMed ID: 27127306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices.
    Krishnamoorthy S; Bedekar AS; Feng J; Sundaram S
    Clin Lab Med; 2007 Mar; 27(1):41-59. PubMed ID: 17416301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized Time-Resolved Echo Particle Image Velocimetry- Particle Tracking Velocimetry Measurements Elucidate Blood Flow in Patients With Left Ventricular Thrombus.
    Sampath K; Harfi TT; George RT; Katz J
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.
    Wu Y; Ren Y; Jiang H
    Electrophoresis; 2017 Jan; 38(2):258-269. PubMed ID: 27387819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.