These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34409770)

  • 1. Topography and Permeability Analyses of Vasculature-on-a-Chip Using Scanning Probe Microscopies.
    Nashimoto Y; Abe M; Fujii R; Taira N; Ida H; Takahashi Y; Ino K; Ramon-Azcon J; Shiku H
    Adv Healthc Mater; 2021 Nov; 10(21):e2101186. PubMed ID: 34409770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging microphysiological systems: a review.
    Peel S; Jackman M
    Am J Physiol Cell Physiol; 2021 May; 320(5):C669-C680. PubMed ID: 33356942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microphysiological systems for human aging research.
    Park S; Laskow TC; Chen J; Guha P; Dawn B; Kim DH
    Aging Cell; 2024 Mar; 23(3):e14070. PubMed ID: 38180277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel thin plate spline methodology to model tissue surfaces and quantify tumor cell invasion in organ-on-chip models.
    Elton E; Strelez C; Ung N; Perez R; Ghaffarian K; Hixon D; Matasci N; Mumenthaler SM
    SLAS Discov; 2024 Jun; 29(4):100163. PubMed ID: 38796111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen I Based Enzymatically Degradable Membranes for Organ-on-a-Chip Barrier Models.
    Arık YB; de Sa Vivas A; Laarveld D; van Laar N; Gemser J; Visscher T; van den Berg A; Passier R; van der Meer AD
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2998-3005. PubMed ID: 33625834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing an adult stem cell derived microphysiological intestinal system for predicting oral prodrug bioconversion and permeability in humans.
    Sharma A; Jin L; Wang X; Wang YT; Stresser DM
    Lab Chip; 2024 Jan; 24(2):339-355. PubMed ID: 38099395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography.
    Mochalov KE; Chistyakov AA; Solovyeva DO; Mezin AV; Oleinikov VA; Vaskan IS; Molinari M; Agapov II; Nabiev I; Efimov AE
    Ultramicroscopy; 2017 Nov; 182():118-123. PubMed ID: 28672183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vascular niche in next generation microphysiological systems.
    Ewald ML; Chen YH; Lee AP; Hughes CCW
    Lab Chip; 2021 Sep; 21(17):3244-3262. PubMed ID: 34396383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development.
    Hargrove-Grimes P; Low LA; Tagle DA
    Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated electrochemical measurement of endothelial permeability in a 3D hydrogel-based microfluidic vascular model.
    Wong JF; Mohan MD; Young EWK; Simmons CA
    Biosens Bioelectron; 2020 Jan; 147():111757. PubMed ID: 31654819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probe chip nanofabrication enabled reverse tip sample scanning probe microscopy concept and measurements.
    Kim HS; Peric N; Minj A; Wouters L; Serron J; Mancini C; Koylan S; Sergeant S; Hantschel T
    Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 38522105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Emergence of Microphysiological Systems (Organs-on-chips) as Paradigm-changing Tools for Toxicologic Pathology.
    Rudmann DG
    Toxicol Pathol; 2019 Jan; 47(1):4-10. PubMed ID: 30407146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability.
    Wong JF; Simmons CA
    Lab Chip; 2019 Mar; 19(6):1060-1070. PubMed ID: 30778462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science.
    Lucas M; Riedo E
    Rev Sci Instrum; 2012 Jun; 83(6):061101. PubMed ID: 22755608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standalone cell culture microfluidic device-based microphysiological system for automated cell observation and application in nephrotoxicity tests.
    Kimura H; Nakamura H; Goto T; Uchida W; Uozumi T; Nishizawa D; Shinha K; Sakagami J; Doi K
    Lab Chip; 2024 Jan; 24(3):408-421. PubMed ID: 38131210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives.
    Kalinin SV; Balke N
    Adv Mater; 2010 Sep; 22(35):E193-209. PubMed ID: 20730814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of pancreas-muscle-liver microphysiological system (MPS) for reproducing glucose metabolism.
    Lee DW; Lee SH; Choi N; Sung JH
    Biotechnol Bioeng; 2019 Dec; 116(12):3433-3445. PubMed ID: 31429925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens.
    Tronolone JJ; Lam J; Agrawal A; Sung K
    Biomed Microdevices; 2021 Apr; 23(2):25. PubMed ID: 33855605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.