These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34410160)

  • 61. [Thermal cure at Roche-Posay: opinion of a practicing dermatologist].
    Castelain PY
    Presse Therm Clim; 1969; 106(3):134-40. PubMed ID: 5408864
    [No Abstract]   [Full Text] [Related]  

  • 62. Sphingobium paulinellae sp. nov. and Sphingobium algicola sp. nov., isolated from a freshwater green alga Paulinella chromatophora.
    Lee Y; Jeon CO
    Int J Syst Evol Microbiol; 2017 Dec; 67(12):5165-5171. PubMed ID: 29056116
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Complete Genome Sequence of the Nonylphenol-Degrading Bacterium Sphingobium cloacae JCM 10874T.
    Ootsuka M; Nishizawa T; Ohta H
    Genome Announc; 2016 Dec; 4(6):. PubMed ID: 27932652
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sphingobium pinisoli sp. nov., isolated from the rhizosphere soil of a Korean native pine tree.
    Lee JC; Song JS; Whang KS
    Antonie Van Leeuwenhoek; 2019 Jun; 112(6):815-825. PubMed ID: 30565024
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural insights into a maleylpyruvate hydrolase from sphingobium sp. SYK-6, a bacterium degrading lignin-derived aryls.
    Hong H; Seo H; Kim KJ
    Biochem Biophys Res Commun; 2019 Jun; 514(3):765-771. PubMed ID: 31079929
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sphingobium soli sp. nov. isolated from rhizosphere soil of a rose.
    Du J; Singh H; Yang JE; Yin CS; Kook M; Yu H; Yi TH
    Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1091-7. PubMed ID: 26427858
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Complete Genome Sequence of
    Ren L; Zhang S; Xu Z; Hu H
    Mol Plant Microbe Interact; 2020 Nov; 33(11):1274-1276. PubMed ID: 32734841
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Isolation and characterization of a novel
    Mitra M; Nguyen KM; Box TW; Gilpin JS; Hamby SR; Berry TL; Duckett EH
    F1000Res; 2020; 9():767. PubMed ID: 32934808
    [No Abstract]   [Full Text] [Related]  

  • 69. Complete Genomic Data of
    Wang S; Nie W; Gong Q; Lee Y; Shui H; Chen G; Zhu B
    Plant Dis; 2020 Jun; 104(6):1578-1580. PubMed ID: 32282280
    [No Abstract]   [Full Text] [Related]  

  • 70. Sphingobium sufflavum sp. nov., isolated from a freshwater lake.
    Sheu SY; Shiau YW; Chen WM
    Int J Syst Evol Microbiol; 2013 Sep; 63(Pt 9):3444-3450. PubMed ID: 23543495
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Whole-Genome Sequencing of
    Rangu SS; Beck A; Sharda M; Mukhopadhyaya R; Seshasayee ASN; Rath D
    Microbiol Resour Announc; 2020 Oct; 9(42):. PubMed ID: 33060264
    [No Abstract]   [Full Text] [Related]  

  • 72. Sphingobium tyrosinilyticum sp. nov., a tyrosine hydrolyzing bacterium isolated from Korean radish garden.
    Huq MA; Akter S; Siddiqi MZ; Balusamy SR; Natarajan S; Yoon JH; Lee SY
    Arch Microbiol; 2018 Oct; 200(8):1143-1149. PubMed ID: 29869295
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils.
    Gran-Scheuch A; Fuentes E; Bravo DM; Jiménez JC; Pérez-Donoso JM
    Front Microbiol; 2017; 8():1634. PubMed ID: 28894442
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization and Genome Analysis of a Phthalate Esters-Degrading Strain
    Feng L; Liu H; Cheng D; Mao X; Wang Y; Wu Z; Wu Q
    Biomed Res Int; 2018; 2018():3917054. PubMed ID: 30065937
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram.
    Porter AW; Campbell BR; Kolvenbach BA; Corvini PF; Benndorf D; Rivera-Cancel G; Hay AG
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):261-72. PubMed ID: 22012340
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov.
    Pal R; Bala S; Dadhwal M; Kumar M; Dhingra G; Prakash O; Prabagaran SR; Shivaji S; Cullum J; Holliger C; Lal R
    Int J Syst Evol Microbiol; 2005 Sep; 55(Pt 5):1965-1972. PubMed ID: 16166696
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family.
    Gan HM; Gan HY; Ahmad NH; Aziz NA; Hudson AO; Savka MA
    Front Cell Infect Microbiol; 2014; 4():188. PubMed ID: 25621282
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative Analysis of the Genetic Basis of Branched Nonylphenol Degradation by Sphingobium amiense DSM 16289
    Ootsuka M; Nishizawa T; Hasegawa M; Kurusu Y; Ohta H
    Microbes Environ; 2018 Dec; 33(4):450-454. PubMed ID: 30518740
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization of the diethyl phthalate-degrading bacterium
    Wang Y; Liu H; Peng Y; Tong L; Feng L; Ma K
    Data Brief; 2018 Oct; 20():1758-1763. PubMed ID: 30276230
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sphingobium phenoxybenzoativorans sp. nov., a 2-phenoxybenzoic-acid-degrading bacterium.
    Cai S; Shi C; Zhao JD; Cao Q; He J; Chen LW
    Int J Syst Evol Microbiol; 2015 Jun; 65(Pt 6):1986-1991. PubMed ID: 25807977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.