BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34410457)

  • 1. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing.
    Aranda Hernandez J; Heuer C; Bahnemann J; Szita N
    Adv Biochem Eng Biotechnol; 2022; 179():101-127. PubMed ID: 34410457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor integration into microfluidic systems: trends and challenges.
    Buttkewitz MA; Heuer C; Bahnemann J
    Curr Opin Biotechnol; 2023 Oct; 83():102978. PubMed ID: 37531802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling up stem cell production: harnessing the potential of microfluidic devices.
    Ding L; Oh S; Shrestha J; Lam A; Wang Y; Radfar P; Warkiani ME
    Biotechnol Adv; 2023 Dec; 69():108271. PubMed ID: 37844769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices.
    Reyes DR; van Heeren H; Guha S; Herbertson L; Tzannis AP; Ducrée J; Bissig H; Becker H
    Lab Chip; 2021 Jan; 21(1):9-21. PubMed ID: 33289737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals.
    Sharma V; Mottafegh A; Joo JU; Kang JH; Wang L; Kim DP
    Lab Chip; 2024 May; 24(11):2861-2882. PubMed ID: 38751338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors.
    Liedert C; Rannaste L; Kokkonen A; Huttunen OH; Liedert R; Hiltunen J; Hakalahti L
    ACS Sens; 2020 Jul; 5(7):2010-2017. PubMed ID: 32469200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing.
    Volk AA; Campbell ZS; Ibrahim MYS; Bennett JA; Abolhasani M
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():45-72. PubMed ID: 35259931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges of translating a cell therapy to GMP.
    Bauer G; Fury B
    Int Rev Neurobiol; 2022; 166():207-234. PubMed ID: 36424093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidics in Biotechnology: Quo Vadis.
    Winkler S; Grünberger A; Bahnemann J
    Adv Biochem Eng Biotechnol; 2022; 179():355-380. PubMed ID: 33495924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication and assembly of lab-on-a-chip and its uses.
    Pradeep A; Raveendran J; Babu TGS
    Prog Mol Biol Transl Sci; 2022; 187(1):121-162. PubMed ID: 35094773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells.
    Qian T; Shusta EV; Palecek SP
    Curr Opin Genet Dev; 2015 Oct; 34():54-60. PubMed ID: 26313850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective.
    Abraham E; Ahmadian BB; Holderness K; Levinson Y; McAfee E
    Adv Biochem Eng Biotechnol; 2018; 165():323-350. PubMed ID: 28534167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies.
    Cardoso BD; Castanheira EMS; Lanceros-Méndez S; Cardoso VF
    Adv Healthc Mater; 2023 Jul; 12(18):e2202936. PubMed ID: 36898671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Microfluidics-Based Technologies for Single Cell Culture.
    García Alonso D; Yu M; Qu H; Ma L; Shen F
    Adv Biosyst; 2019 Nov; 3(11):e1900003. PubMed ID: 32648694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.