These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34410613)

  • 1. Enzymatic Hydrolysis of Lignocellulosic Biomass Using an Optimized Enzymatic Cocktail Prepared from Secretomes of Filamentous Fungi Isolated from Amazonian Biodiversity.
    Pimentel PSS; de Oliveira JB; Astolfi-Filho S; Pereira N
    Appl Biochem Biotechnol; 2021 Dec; 193(12):3915-3935. PubMed ID: 34410613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining analytical approaches for better lignocellulosic biomass degradation: a way of improving fungal enzymatic cocktails?
    Raulo R; Heuson E; Froidevaux R; Phalip V
    Biotechnol Lett; 2021 Dec; 43(12):2283-2298. PubMed ID: 34708264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient methane production from agro-industrial residues using anaerobic fungal-rich consortia.
    Thongbunrod N; Chaiprasert P
    World J Microbiol Biotechnol; 2024 Jun; 40(8):239. PubMed ID: 38862848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.
    Chundawat SP; Balan V; Dale BE
    Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance.
    Paës G; Navarro D; Benoit Y; Blanquet S; Chabbert B; Chaussepied B; Coutinho PM; Durand S; Grigoriev IV; Haon M; Heux L; Launay C; Margeot A; Nishiyama Y; Raouche S; Rosso MN; Bonnin E; Berrin JG
    Biotechnol Biofuels; 2019; 12():76. PubMed ID: 30976326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.
    Maehara L; Pereira SC; Silva AJ; Farinas CS
    Biotechnol Prog; 2018 May; 34(3):671-680. PubMed ID: 29388389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels.
    Adsul M; Sandhu SK; Singhania RR; Gupta R; Puri SK; Mathur A
    Enzyme Microb Technol; 2020 Feb; 133():109442. PubMed ID: 31874688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass.
    Chylenski P; Forsberg Z; Ståhlberg J; Várnai A; Lersch M; Bengtsson O; Sæbø S; Horn SJ; Eijsink VGH
    J Biotechnol; 2017 Mar; 246():16-23. PubMed ID: 28219736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An update on enzymatic cocktails for lignocellulose breakdown.
    Lopes AM; Ferreira Filho EX; Moreira LRS
    J Appl Microbiol; 2018 Sep; 125(3):632-645. PubMed ID: 29786939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM
    Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass.
    Moya EB; Syhler B; Dragone G; Mussatto SI
    Enzyme Microb Technol; 2024 Apr; 175():110403. PubMed ID: 38341912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: Optimization and synergism studies.
    Méndez Arias J; Modesto LF; Polikarpov I; Pereira N
    Biotechnol Prog; 2016 Sep; 32(5):1222-1229. PubMed ID: 27254751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.
    Agrawal P; Verma D; Daniell H
    PLoS One; 2011; 6(12):e29302. PubMed ID: 22216240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail.
    Peciulyte A; Pisano M; de Vries RP; Olsson L
    Biotechnol Lett; 2017 Sep; 39(9):1403-1411. PubMed ID: 28573540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes.
    Filiatrault-Chastel C; Navarro D; Haon M; Grisel S; Herpoël-Gimbert I; Chevret D; Fanuel M; Henrissat B; Heiss-Blanquet S; Margeot A; Berrin JG
    Biotechnol Biofuels; 2019; 12():55. PubMed ID: 30923563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion.
    Berrin JG; Navarro D; Couturier M; Olivé C; Grisel S; Haon M; Taussac S; Lechat C; Courtecuisse R; Favel A; Coutinho PM; Lesage-Meessen L
    Appl Environ Microbiol; 2012 Sep; 78(18):6483-90. PubMed ID: 22773628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass.
    Treebupachatsakul T; Shioya K; Nakazawa H; Kawaguchi T; Morikawa Y; Shida Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2015 Dec; 120(6):657-65. PubMed ID: 26026380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the flexibility of cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerising multiple agro-industrial lignocellulosic feedstocks.
    Jain L; Kurmi AK; Kumar A; Narani A; Bhaskar T; Agrawal D
    Int J Biol Macromol; 2020 Jul; 154():538-544. PubMed ID: 32194122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes.
    Saldarriaga-Hernández S; Velasco-Ayala C; Leal-Isla Flores P; de Jesús Rostro-Alanis M; Parra-Saldivar R; Iqbal HMN; Carrillo-Nieves D
    Int J Biol Macromol; 2020 Oct; 161():1099-1116. PubMed ID: 32526298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis.
    Couturier M; Navarro D; Olivé C; Chevret D; Haon M; Favel A; Lesage-Meessen L; Henrissat B; Coutinho PM; Berrin JG
    BMC Genomics; 2012 Feb; 13():57. PubMed ID: 22300648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.