These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34411298)
1. Functional stability of CFTR depends on tight binding of ATP at its degenerate ATP-binding site. Yeh HI; Yu YC; Kuo PL; Tsai CK; Huang HT; Hwang TC J Physiol; 2021 Oct; 599(20):4625-4642. PubMed ID: 34411298 [TBL] [Abstract][Full Text] [Related]
2. Optimization of the degenerated interfacial ATP binding site improves the function of disease-related mutant cystic fibrosis transmembrane conductance regulator (CFTR) channels. Tsai MF; Jih KY; Shimizu H; Li M; Hwang TC J Biol Chem; 2010 Nov; 285(48):37663-71. PubMed ID: 20861014 [TBL] [Abstract][Full Text] [Related]
3. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
4. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
5. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator. Yu YC; Sohma Y; Hwang TC J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474 [TBL] [Abstract][Full Text] [Related]
6. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
7. Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Csanády L; Vergani P; Gadsby DC Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1241-6. PubMed ID: 19966305 [TBL] [Abstract][Full Text] [Related]
8. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation. Meng X; Wang Y; Wang X; Wrennall JA; Rimington TL; Li H; Cai Z; Ford RC; Sheppard DN J Biol Chem; 2017 Mar; 292(9):3706-3719. PubMed ID: 28087700 [TBL] [Abstract][Full Text] [Related]
9. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. Jih KY; Li M; Hwang TC; Bompadre SG J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785 [TBL] [Abstract][Full Text] [Related]
10. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
11. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis. Bompadre SG; Hwang TC Sheng Li Xue Bao; 2007 Aug; 59(4):431-42. PubMed ID: 17700963 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects. Csanády L; Töröcsik B J Gen Physiol; 2014 Oct; 144(4):321-36. PubMed ID: 25267914 [TBL] [Abstract][Full Text] [Related]
13. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl Chen JH; Xu W; Sheppard DN J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763 [TBL] [Abstract][Full Text] [Related]
14. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR. Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332 [TBL] [Abstract][Full Text] [Related]
15. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis. Yeh JT; Yu YC; Hwang TC J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177 [TBL] [Abstract][Full Text] [Related]
16. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. Okeyo G; Wang W; Wei S; Kirk KL J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589 [TBL] [Abstract][Full Text] [Related]
17. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator. Infield DT; Cui G; Kuang C; McCarty NA Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(5):L403-14. PubMed ID: 26684250 [TBL] [Abstract][Full Text] [Related]
18. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related]
19. Exploiting species differences to understand the CFTR Cl- channel. Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912 [TBL] [Abstract][Full Text] [Related]
20. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating. Cai Z; Palmai-Pallag T; Khuituan P; Mutolo MJ; Boinot C; Liu B; Scott-Ward TS; Callebaut I; Harris A; Sheppard DN J Physiol; 2015 Jun; 593(11):2427-46. PubMed ID: 25763566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]