BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34411547)

  • 21. Biodiesel from waste cooking oil in Mexico City.
    Sheinbaum C; Balam MV; Robles G; Lelo de Larrea S; Mendoza R
    Waste Manag Res; 2015 Aug; 33(8):730-9. PubMed ID: 26142425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of fuel characteristics of hydrotreated waste cooking oil with its biodiesel and fossil diesel.
    Sonthalia A; Kumar N
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):11824-11834. PubMed ID: 31848963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodiesel production and properties estimation from food waste and domestic wastewater by Rhodosporidium toruloides.
    Chen N; Xie Y; Liang Z; Shim H
    J Environ Manage; 2023 Dec; 348():119368. PubMed ID: 37866181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of food waste hydrolysate as an alternative carbon source for microbial oil synthesis.
    Xu Y; Wang X; Li Z; Cheng S; Jiang J
    Bioresour Technol; 2022 Jan; 344(Pt B):126312. PubMed ID: 34767904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valorization of waste-cooking oil into sophorolipids and application of their methyl hydroxyl branched fatty acid derivatives to produce engineering bioplastics.
    Kim JH; Oh YR; Hwang J; Kang J; Kim H; Jang YA; Lee SS; Hwang SY; Park J; Eom GT
    Waste Manag; 2021 Apr; 124():195-202. PubMed ID: 33631444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fermentation process for the production of poly(3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate.
    Loan TT; Trang DTQ; Huy PQ; Ninh PX; Van Thuoc D
    Biotechnol Rep (Amst); 2022 Mar; 33():e00700. PubMed ID: 35070732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An appraisal on enablers for enhancement of waste cooking oil-based biodiesel production facilities using the interpretative structural modeling approach.
    Kukana R; Jakhar OP
    Biotechnol Biofuels; 2021 Nov; 14(1):213. PubMed ID: 34742323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodiesel synthesized from waste cooking oil in a continuous microwave assisted reactor reduced PM and NOx emissions.
    Mohd Ali MA; Gimbun J; Lau KL; Cheng CK; Vo DN; Lam SS; Yunus RM
    Environ Res; 2020 Jun; 185():109452. PubMed ID: 32259725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar.
    Bhatia SK; Gurav R; Choi TR; Kim HJ; Yang SY; Song HS; Park JY; Park YL; Han YH; Choi YK; Kim SH; Yoon JJ; Yang YH
    Bioresour Technol; 2020 Apr; 302():122872. PubMed ID: 32014731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of electrostatic precipitator on exhaust emissions in biodiesel fuelled CI engine.
    Sonthalia A; Garg S; Sharma R; Subramanian T; Kumar N
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):11850-11859. PubMed ID: 31884550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.
    Li M; Zheng Y; Chen Y; Zhu X
    Bioresour Technol; 2014 Feb; 154():345-8. PubMed ID: 24405650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.
    Huang XF; Liu JN; Lu LJ; Peng KM; Yang GX; Liu J
    Bioresour Technol; 2016 Apr; 206():141-149. PubMed ID: 26851898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.
    Wang J; Zhong Z; Zhang B; Ding K; Xue Z; Deng A; Ruan R
    Waste Manag; 2017 Feb; 60():357-362. PubMed ID: 27625179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study.
    Soccol CR; Dalmas Neto CJ; Soccol VT; Sydney EB; da Costa ESF; Medeiros ABP; Vandenberghe LPS
    Bioresour Technol; 2017 Jan; 223():259-268. PubMed ID: 27969577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Valorization of lipidic food waste for enhanced biodiesel recovery through two-step conversion: A novel microalgae-integrated approach.
    Almutairi AW; Al-Hasawi ZM; Abomohra AE
    Bioresour Technol; 2021 Dec; 342():125966. PubMed ID: 34562712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodiesel fuel production from waste cooking oil by the inclusion complex of heteropoly acid with bridged bis-cyclodextrin.
    Zou C; Zhao P; Shi L; Huang S; Luo P
    Bioresour Technol; 2013 Oct; 146():785-788. PubMed ID: 23972395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.
    Yano J; Aoki T; Nakamura K; Yamada K; Sakai S
    Waste Manag; 2015 Apr; 38():409-23. PubMed ID: 25670164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production.
    Park GW; Fei Q; Jung K; Chang HN; Kim YC; Kim NJ; Choi JD; Kim S; Cho J
    Biotechnol J; 2014 Dec; 9(12):1536-46. PubMed ID: 25262978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK; Lee KT; Mohamed AR
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.