These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34411701)
1. Helicase-AID: A novel molecular device for base editing at random genomic loci. Wang J; Zhao D; Li J; Hu M; Xin X; Price MA; Li Q; Liu L; Li S; Rosser SJ; Zhang C; Bi C; Zhang X Metab Eng; 2021 Sep; 67():396-402. PubMed ID: 34411701 [TBL] [Abstract][Full Text] [Related]
2. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562 [TBL] [Abstract][Full Text] [Related]
3. Modular and Flexible Molecular Device for Simultaneous Cytosine and Adenine Base Editing at Random Genomic Loci in Filamentous Fungi. Duan Y; Tan Y; Chen X; Pei X; Li M ACS Synth Biol; 2023 Jul; 12(7):2147-2156. PubMed ID: 37428865 [TBL] [Abstract][Full Text] [Related]
4. Random Base Editing for Genome Evolution in Pan Y; Xia S; Dong C; Pan H; Cai J; Huang L; Xu Z; Lian J ACS Synth Biol; 2021 Oct; 10(10):2440-2446. PubMed ID: 34542280 [TBL] [Abstract][Full Text] [Related]
5. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in Zhang Y; Yun K; Huang H; Tu R; Hua E; Wang M ACS Synth Biol; 2021 May; 10(5):1053-1063. PubMed ID: 33720688 [TBL] [Abstract][Full Text] [Related]
6. A Cas3-base editing tool for targetable in vivo mutagenesis. Zimmermann A; Prieto-Vivas JE; Cautereels C; Gorkovskiy A; Steensels J; Van de Peer Y; Verstrepen KJ Nat Commun; 2023 Jun; 14(1):3389. PubMed ID: 37296137 [TBL] [Abstract][Full Text] [Related]
7. Functional conservation of the pre-sensor one beta-finger hairpin (PS1-hp) structures in mini-chromosome maintenance proteins of Saccharomyces cerevisiae and archaea. Ramey CJ; Sclafani RA G3 (Bethesda); 2014 May; 4(7):1319-26. PubMed ID: 24875627 [TBL] [Abstract][Full Text] [Related]
8. Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer. Jezewska MJ; Kim US; Bujalowski W Biochemistry; 1996 Feb; 35(7):2129-45. PubMed ID: 8652555 [TBL] [Abstract][Full Text] [Related]
9. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Kim YB; Komor AC; Levy JM; Packer MS; Zhao KT; Liu DR Nat Biotechnol; 2017 Apr; 35(4):371-376. PubMed ID: 28191901 [TBL] [Abstract][Full Text] [Related]
10. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Nishida K; Arazoe T; Yachie N; Banno S; Kakimoto M; Tabata M; Mochizuki M; Miyabe A; Araki M; Hara KY; Shimatani Z; Kondo A Science; 2016 Sep; 353(6305):. PubMed ID: 27492474 [TBL] [Abstract][Full Text] [Related]
11. Development of a DNA double-strand break-free base editing tool in Deng C; Lv X; Li J; Liu Y; Du G; Liu L Metab Eng Commun; 2020 Dec; 11():e00135. PubMed ID: 32577397 [TBL] [Abstract][Full Text] [Related]
12. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion. Liu Z; Shan H; Chen S; Chen M; Zhang Q; Lai L; Li Z FASEB J; 2019 Aug; 33(8):9210-9219. PubMed ID: 31071267 [TBL] [Abstract][Full Text] [Related]
13. Efficient CRISPR-mediated base editing in Rodrigues SD; Karimi M; Impens L; Van Lerberge E; Coussens G; Aesaert S; Rombaut D; Holtappels D; Ibrahim HMM; Van Montagu M; Wagemans J; Jacobs TB; De Coninck B; Pauwels L Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443212 [No Abstract] [Full Text] [Related]
15. Strand specificity in the interactions of Escherichia coli primary replicative helicase DnaB protein with a replication fork. Jezewska MJ; Rajendran S; Bujalowski W Biochemistry; 1997 Aug; 36(33):10320-6. PubMed ID: 9254631 [TBL] [Abstract][Full Text] [Related]
16. Functional conservation of beta-hairpin DNA binding domains in the Mcm protein of Methanobacterium thermoautotrophicum and the Mcm5 protein of Saccharomyces cerevisiae. Leon RP; Tecklenburg M; Sclafani RA Genetics; 2008 Aug; 179(4):1757-68. PubMed ID: 18660534 [TBL] [Abstract][Full Text] [Related]
17. Differences in the single-stranded DNA binding activities of MCM2-7 and MCM467: MCM2 and MCM5 define a slow ATP-dependent step. Bochman ML; Schwacha A J Biol Chem; 2007 Nov; 282(46):33795-33804. PubMed ID: 17895243 [TBL] [Abstract][Full Text] [Related]
18. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401 [TBL] [Abstract][Full Text] [Related]
19. Enhanced single-base mutation diversity by the combination of cytidine deaminase with DNA-repairing enzymes in yeast. Huang ZR; Chen XR; Liu DF; Cui YZ; Li BZ; Yuan YJ Biotechnol J; 2023 Nov; 18(11):e2300137. PubMed ID: 37529889 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. Easmin F; Sasano Y; Kimura S; Hassan N; Ekino K; Taguchi H; Harashima S J Biosci Bioeng; 2020 Feb; 129(2):129-139. PubMed ID: 31585858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]