These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34411835)

  • 1. The most remarkable interference to gasoline identification from polystyrene-co-butadiene and the corresponding cause.
    Jin J; Li K; Chi J; Li S; Zhang J; Lu L
    J Chromatogr A; 2021 Sep; 1654():462462. PubMed ID: 34411835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of thermal environment in fire on the identification of gasoline combustion residues.
    Jin J; Chi J; Xue T; Xu J; Liu L; Li Y; Deng L; Zhang J
    Forensic Sci Int; 2020 Oct; 315():110430. PubMed ID: 32738673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent.
    Turner DA; Goodpaster JV
    Forensic Sci Int; 2014 Jun; 239():86-91. PubMed ID: 24769222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiquantitative screening of trace combustion-derived volatile substances in the blood of fire victims using NeedlEx
    Suzuki Y; Ishizawa F; Honda K
    Forensic Sci Int; 2017 Sep; 278():228-239. PubMed ID: 28763683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evaluation of the extent of transporting or "tracking" an identifiable ignitable liquid (gasoline) throughout fire scenes during the investigative process.
    Armstrong A; Babrauskas V; Holmes DL; Martin C; Powell R; Riggs S; Young LD
    J Forensic Sci; 2004 Jul; 49(4):741-8. PubMed ID: 15317188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of volatile organic compounds in smoke at experimental fires.
    Austin CC; Wang D; Ecobichon DJ; Dussault G
    J Toxicol Environ Health A; 2001 Jun; 63(3):191-206. PubMed ID: 11405415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations between blood volatile hydrocarbon concentrations in different types of fire-related deaths.
    Sasao A; Yonemitsu K; Ohtsu Y; Tsutsumi H; Furukawa S; Nishitani Y
    Forensic Sci Int; 2023 Dec; 353():111872. PubMed ID: 38775734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.
    Pahor K; Olson G; Forbes SL
    Int J Legal Med; 2013 Sep; 127(5):923-30. PubMed ID: 23355111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of accelerant in fire debris by pyrolysis gas chromatography-mass spectrometry].
    Zhang J; Liu J
    Se Pu; 2019 Apr; 37(4):426-431. PubMed ID: 30977346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for forensic gasoline comparison in fire debris samples: A numerical likelihood ratio system.
    Vergeer P; Hendrikse JN; Grutters MMP; Peschier LJC
    Sci Justice; 2020 Sep; 60(5):438-450. PubMed ID: 32873384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Alkylate Components for Classifying Gasoline in Fire Debris Samples.
    Peschier LJC; Grutters MMP; Hendrikse JN
    J Forensic Sci; 2018 Mar; 63(2):420-430. PubMed ID: 28556928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptic chemical identification as a crime intelligence aid.
    Sturaro A; Rella R; Parvoli G; Doretti L
    Sci Justice; 1999; 39(1):39-43. PubMed ID: 10750271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes.
    Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M
    Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of volatile organic compounds in smoke at municipal structural fires.
    Austin CC; Wang D; Ecobichon DJ; Dussault G
    J Toxicol Environ Health A; 2001 Jul; 63(6):437-58. PubMed ID: 11482799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.
    Hirayama D; Saron C
    Waste Manag Res; 2015 Jun; 33(6):543-9. PubMed ID: 26022280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of the components of styrene polymers: polystyrene, acrylonitrile-butadiene-styrene (ABS) and styrene-butadiene-rubber (SBR). Reactants and additives.
    Fishbein L
    Prog Clin Biol Res; 1984; 141():239-62. PubMed ID: 6371825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fire Size of Gasoline Pool Fires.
    Marková I; Lauko J; Makovická Osvaldová L; Mózer V; Svetlík J; Monoši M; Orinčák M
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31936275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.