These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Development of alginate/pectin microcapsules by a dual process combining emulsification and ultrasonic gelation for encapsulation and controlled release of anthocyanins from grapes (Vitis labrusca L.). Norcino LB; Mendes JF; Figueiredo JA; Oliveira NL; Botrel DA; Mattoso LHC Food Chem; 2022 Oct; 391():133256. PubMed ID: 35623279 [TBL] [Abstract][Full Text] [Related]
3. Microencapsulation of Saffron Petal Phenolic Extract: Their Characterization, In Vitro Gastrointestinal Digestion, and Storage Stability. Ahmadian Z; Niazmand R; Pourfarzad A J Food Sci; 2019 Oct; 84(10):2745-2757. PubMed ID: 31546290 [TBL] [Abstract][Full Text] [Related]
4. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Kuck LS; Noreña CP Food Chem; 2016 Mar; 194():569-76. PubMed ID: 26471594 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature and relative humidity on stability following simulated gastro-intestinal digestion of microcapsules of Bordo grape skin phenolic extract produced with different carrier agents. Kuck LS; Wesolowski JL; Noreña CPZ Food Chem; 2017 Sep; 230():257-264. PubMed ID: 28407909 [TBL] [Abstract][Full Text] [Related]
6. Microencapsulation of blueberry anthocyanins by spray drying with soy protein isolates/high methyl pectin combination: Physicochemical properties, release behavior in vitro and storage stability. Pan LH; Chen LP; Wu CL; Wang JF; Luo SZ; Luo JP; Zheng Z Food Chem; 2022 Nov; 395():133626. PubMed ID: 35810629 [TBL] [Abstract][Full Text] [Related]
7. Development of microencapsulated grape juice powders using black 'Isabel' grape peel pectin and application in jelly formulation with enhanced in vitro bioaccessibility of anthocyanins. Karadag A; Ozkan K; Sagdic O J Food Sci; 2024 Apr; 89(4):2067-2083. PubMed ID: 38411308 [TBL] [Abstract][Full Text] [Related]
8. Microencapsulation by spray-drying and freeze-drying of extract of phenolic compounds obtained from ciriguela peel. da Silva Júnior ME; Araújo MVRL; Martins ACS; Dos Santos Lima M; da Silva FLH; Converti A; Maciel MIS Sci Rep; 2023 Sep; 13(1):15222. PubMed ID: 37709786 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. Baracat MM; Nakagawa AM; Casagrande R; Georgetti SR; Verri WA; de Freitas O AAPS PharmSciTech; 2012 Jun; 13(2):364-72. PubMed ID: 22322381 [TBL] [Abstract][Full Text] [Related]
10. Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract. Tolun A; Artik N; Altintas Z Food Chem; 2020 Jan; 302():125347. PubMed ID: 31430631 [TBL] [Abstract][Full Text] [Related]
11. Phytochemicals, Monosaccharides and Elemental Composition of the Non-Pomace Constituent of Organic and Conventional Grape Juices (Vitis labrusca L.): Effect of Drying on the Bioactive Content. Haas IC; Toaldo IM; de Gois JS; Borges DL; Petkowicz CL; Bordignon-Luiz MT Plant Foods Hum Nutr; 2016 Dec; 71(4):422-428. PubMed ID: 27738868 [TBL] [Abstract][Full Text] [Related]
12. Microencapsulation of fish oil by casein-pectin complexes and gum arabic microparticles: oxidative stabilisation. Vaucher ACDS; Dias PCM; Coimbra PT; Costa IDSM; Marreto RN; Dellamora-Ortiz GM; De Freitas O; Ramos MFS J Microencapsul; 2019 Aug; 36(5):459-473. PubMed ID: 31322456 [TBL] [Abstract][Full Text] [Related]
13. Whey-pectin microcapsules improve the stability of grape marc phenolics during digestion. Cruz-Molina AV; Gonçalves C; Neto MD; Pastrana L; Jauregi P; Amado IR J Food Sci; 2023 Dec; 88(12):4892-4906. PubMed ID: 37905716 [TBL] [Abstract][Full Text] [Related]
14. Microencapsulation of cocoa liquor nanoemulsion with whey protein using spray drying to protection of volatile compounds and antioxidant capacity. Calva-Estrada SJ; Lugo-Cervantes E; Jiménez-Fernández M J Microencapsul; 2019 Aug; 36(5):447-458. PubMed ID: 31269831 [TBL] [Abstract][Full Text] [Related]
16. Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Kanha N; Regenstein JM; Surawang S; Pitchakarn P; Laokuldilok T Food Chem; 2021 Mar; 340():127950. PubMed ID: 32896780 [TBL] [Abstract][Full Text] [Related]
17. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Souza VB; Fujita A; Thomazini M; da Silva ER; Lucon JF; Genovese MI; Favaro-Trindade CS Food Chem; 2014 Dec; 164():380-6. PubMed ID: 24996348 [TBL] [Abstract][Full Text] [Related]
18. Optimization of Microencapsulation of Fish Oil with Gum Arabic/Casein/Beta-Cyclodextrin Mixtures by Spray Drying. Li J; Xiong S; Wang F; Regenstein JM; Liu R J Food Sci; 2015 Jul; 80(7):C1445-52. PubMed ID: 26087831 [TBL] [Abstract][Full Text] [Related]
19. Rice bran protein increases the retention of anthocyanins by acting as an encapsulating agent in the spray drying of grape juice. Almeida RF; Gomes MHG; Kurozawa LE Food Res Int; 2023 Oct; 172():113237. PubMed ID: 37689965 [TBL] [Abstract][Full Text] [Related]
20. Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. Oliveira AC; Moretti TS; Boschini C; Baliero JC; Freitas O; Favaro-Trindade CS J Microencapsul; 2007 Nov; 24(7):673-81. PubMed ID: 17763061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]