These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34411880)

  • 21. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.
    Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T
    Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dropwise Condensation on Multiscale Bioinspired Metallic Surfaces with Nanofeatures.
    Orejon D; Askounis A; Takata Y; Attinger D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24735-24750. PubMed ID: 31180632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow condensation on copper-based nanotextured superhydrophobic surfaces.
    Torresin D; Tiwari MK; Del Col D; Poulikakos D
    Langmuir; 2013 Jan; 29(2):840-8. PubMed ID: 23249322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.
    Thomas TM; Sinha Mahapatra P
    Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dropwise condensation on bioinspired hydrophilic-slippery surface.
    Guo L; Tang GH
    RSC Adv; 2018 Nov; 8(69):39341-39351. PubMed ID: 35558060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is dropwise condensation feasible? A review on surface modifications for continuous dropwise condensation and a profitability analysis.
    Ahlers M; Buck-Emden A; Bart HJ
    J Adv Res; 2019 Mar; 16():1-13. PubMed ID: 30899584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasi-Liquid Surfaces for Sustainable High-Performance Steam Condensation.
    Monga D; Guo Z; Shan L; Taba SA; Sarma J; Dai X
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13932-13941. PubMed ID: 35287435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation.
    Wang R; Wu F; Xing D; Yu F; Gao X
    ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scalable graphene coatings for enhanced condensation heat transfer.
    Preston DJ; Mafra DL; Miljkovic N; Kong J; Wang EN
    Nano Lett; 2015 May; 15(5):2902-9. PubMed ID: 25826223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate.
    Macner AM; Daniel S; Steen PH
    Langmuir; 2019 Sep; 35(35):11566-11578. PubMed ID: 31381348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth Rates and Spontaneous Navigation of Condensate Droplets Through Randomly Structured Textures.
    Sharma CS; Combe J; Giger M; Emmerich T; Poulikakos D
    ACS Nano; 2017 Feb; 11(2):1673-1682. PubMed ID: 28170223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities.
    Feldmann D; Pinchasik BE
    J Colloid Interface Sci; 2023 Aug; 644():146-156. PubMed ID: 37105038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N
    Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical Condensation.
    Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N
    ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dropwise Condensation on a Hierarchical Nanopillar Structured Surface.
    Baba S; Sawada K; Tanaka K; Okamoto A
    Langmuir; 2020 Sep; 36(34):10033-10042. PubMed ID: 32787030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Few-layer graphene on nickel enabled sustainable dropwise condensation.
    Chang W; Peng B; Egab K; Zhang Y; Cheng Y; Li X; Ma X; Li C
    Sci Bull (Beijing); 2021 Sep; 66(18):1877-1884. PubMed ID: 36654397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets.
    Adera S; Alvarenga J; Shneidman AV; Zhang CT; Davitt A; Aizenberg J
    ACS Nano; 2020 Jul; 14(7):8024-8035. PubMed ID: 32490664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.