These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34412015)

  • 1. Direct electron transfer (DET) processes in a flow anode system-Energy-efficient electrochemical oxidation of phenol.
    Xie J; Ma J; Zhang C; Waite TD
    Water Res; 2021 Sep; 203():117547. PubMed ID: 34412015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced mass transfer and service time of mesh Ti/Sb-SnO
    Huang L; Li D; Liu J; Yang L; Dai C; Ren N; Feng Y
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):42072-42081. PubMed ID: 32705558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiating the reaction mechanism of three-dimensionally electrocatalytic system packed with different particle electrodes: Electro-oxidation versus electro-fenton.
    Xiao H; Hao Y; Wu J; Meng X; Feng F; Xu F; Luo S; Jiang B
    Chemosphere; 2023 Jun; 325():138423. PubMed ID: 36934480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated flow anodic oxidation and ultrafiltration system for continuous defluorination of perfluorooctanoic acid (PFOA).
    Xie J; Zhang C; David Waite T
    Water Res; 2022 Jun; 216():118319. PubMed ID: 35339051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing electrochemical degradation of phenol at optimum pH condition with a Pt/Ti anode electrode.
    Zambrano J; Park H; Min B
    Environ Technol; 2020 Oct; 41(24):3248-3259. PubMed ID: 31390950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFD simulation of mass transfer in electrochemical reactor with mesh cathode for higher phenol degradation.
    Huang L; Li D; Liu J; Yang L; Dai C; Ren N; Feng Y
    Chemosphere; 2021 Jan; 262():127626. PubMed ID: 32777608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt.
    Li M; Feng C; Hu W; Zhang Z; Sugiura N
    J Hazard Mater; 2009 Feb; 162(1):455-62. PubMed ID: 18599203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti
    Wang C; Zhang T; Yin L; Ni C; Ni J; Hou LA
    Chemosphere; 2022 Jan; 286(Pt 2):131804. PubMed ID: 34365167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow anodic oxidation: Towards high-efficiency removal of aqueous contaminants by adsorbed hydroxyl radicals at 1.5 V vs SHE.
    Xie J; Ma J; Zhao S; Waite TD
    Water Res; 2021 Jul; 200():117259. PubMed ID: 34058481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical degradation of indigo carmine, P-nitrosodimethylaniline and clothianidin on a fabricated Ti/SnO
    Nguyen Tien H; Bui DN; Manh TD; Tram NT; Ngo VD; Mwazighe FM; Hoang HY; Le VT
    Chemosphere; 2023 Feb; 313():137352. PubMed ID: 36436577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: Role of direct electron transfer and hydroxyl radical oxidation.
    Yang K; Feng X; Lin H; Xu J; Yang C; Du J; Cheng D; Lv S; Yang Z
    J Hazard Mater; 2022 Feb; 423(Pt B):127239. PubMed ID: 34844357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promotion of Phenol Electro-oxidation by Oxygen Evolution Reaction on an Active Electrode for Efficient Pollution Control and Hydrogen Evolution.
    Qin H; Wei X; Ye Z; Liu X; Mao S
    Environ Sci Technol; 2022 May; 56(9):5753-5762. PubMed ID: 35420409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the electrochemical degradation process of the antibiotic ciprofloxacin using a double-sided β-PbO
    Wachter N; Aquino JM; Denadai M; Barreiro JC; Silva AJ; Cass QB; Rocha-Filho RC; Bocchi N
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4438-4449. PubMed ID: 29876851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO
    Samarghandi MR; Dargahi A; Rahmani A; Shabanloo A; Ansari A; Nematollahi D
    Chemosphere; 2021 Sep; 279():130640. PubMed ID: 34134425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO
    Xing X; Ni J; Zhu X; Jiang Y; Xia J
    Chemosphere; 2018 Aug; 205():361-368. PubMed ID: 29704843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode.
    Zhu X; Ni J; Wei J; Xing X; Li H; Jiang Y
    J Hazard Mater; 2010 Dec; 184(1-3):493-498. PubMed ID: 20832933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation.
    Min SJ; Kim JG; Baek K
    J Hazard Mater; 2020 Dec; 400():123083. PubMed ID: 32947731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO
    Liu C; Min Y; Zhang AY; Si Y; Chen JJ; Yu HQ
    Water Res; 2019 Nov; 165():114980. PubMed ID: 31434012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a permeable SnO
    Yang C; Fan Y; Shang S; Li P; Li XY
    Environ Int; 2021 Dec; 157():106827. PubMed ID: 34418849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and comparison of Ti/TiO
    Moura de Salles Pupo M; Albahaca Oliva JM; Barrios Eguiluz KI; Salazar-Banda GR; Radjenovic J
    Chemosphere; 2020 Aug; 253():126701. PubMed ID: 32302902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.