These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34412255)

  • 1. Geometric Brownian motion under stochastic resetting: A stationary yet nonergodic process.
    Stojkoski V; Sandev T; Kocarev L; Pal A
    Phys Rev E; 2021 Jul; 104(1-1):014121. PubMed ID: 34412255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-averaging and nonergodicity of reset geometric Brownian motion with drift.
    Vinod D; Cherstvy AG; Metzler R; Sokolov IM
    Phys Rev E; 2022 Sep; 106(3-1):034137. PubMed ID: 36266856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity.
    Stojkoski V; Jolakoski P; Pal A; Sandev T; Kocarev L; Metzler R
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2224):20210157. PubMed ID: 35400188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting.
    Trajanovski P; Jolakoski P; Zelenkovski K; Iomin A; Kocarev L; Sandev T
    Phys Rev E; 2023 May; 107(5-1):054129. PubMed ID: 37328979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes.
    Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ergodic properties of Brownian motion under stochastic resetting.
    Barkai E; Flaquer-Galmés R; Méndez V
    Phys Rev E; 2023 Dec; 108(6-1):064102. PubMed ID: 38243500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resetting-mediated navigation of an active Brownian searcher in a homogeneous topography.
    Sar GK; Ray A; Ghosh D; Hens C; Pal A
    Soft Matter; 2023 Jun; 19(24):4502-4518. PubMed ID: 37278702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Brownian motion in two dimensions under stochastic resetting.
    Kumar V; Sadekar O; Basu U
    Phys Rev E; 2020 Nov; 102(5-1):052129. PubMed ID: 33327209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current fluctuations in stochastically resetting particle systems.
    Di Bello C; Hartmann AK; Majumdar SN; Mori F; Rosso A; Schehr G
    Phys Rev E; 2023 Jul; 108(1-1):014112. PubMed ID: 37583217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonrenewal resetting of scaled Brownian motion.
    Bodrova AS; Chechkin AV; Sokolov IM
    Phys Rev E; 2019 Jul; 100(1-1):012119. PubMed ID: 31499839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal non-Gaussian search with stochastic resetting.
    Stanislavsky A; Weron A
    Phys Rev E; 2021 Jul; 104(1-1):014125. PubMed ID: 34412216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic resetting of active Brownian particles with Lorentz force.
    Abdoli I; Sharma A
    Soft Matter; 2021 Feb; 17(5):1307-1316. PubMed ID: 33313625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonergodicity of reset geometric Brownian motion.
    Vinod D; Cherstvy AG; Wang W; Metzler R; Sokolov IM
    Phys Rev E; 2022 Jan; 105(1):L012106. PubMed ID: 35193263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of stochastic resettings on the counting of level crossings for inertial random processes.
    Montero M; Palassini M; Masoliver J
    Phys Rev E; 2024 Jul; 110(1-1):014116. PubMed ID: 39160907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport properties of random walks under stochastic noninstantaneous resetting.
    Masó-Puigdellosas A; Campos D; Méndez V
    Phys Rev E; 2019 Oct; 100(4-1):042104. PubMed ID: 31770871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ergodicity breaking in wealth dynamics: The case of reallocating geometric Brownian motion.
    Stojkoski V; Karbevski M
    Phys Rev E; 2022 Feb; 105(2-1):024107. PubMed ID: 35291164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resetting processes with noninstantaneous return.
    Bodrova AS; Sokolov IM
    Phys Rev E; 2020 May; 101(5-1):052130. PubMed ID: 32575253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous ratcheting by stochastic resetting.
    Ghosh PK; Nayak S; Liu J; Li Y; Marchesoni F
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37466227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ratcheting by Stochastic Resetting With Fat-Tailed Time Distributions.
    Liu J; Li Y; Ghosh PK; Nayak S; Marchesoni F
    Chemphyschem; 2024 Dec; 25(23):e202400313. PubMed ID: 39129421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate enhancement of gated drift-diffusion process by optimal resetting.
    Biswas A; Pal A; Mondal D; Ray S
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37539722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.