These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34412331)

  • 1. Unsteady dynamics of a classical particle-wave entity.
    Valani RN; Slim AC; Paganin DM; Simula TP; Vo T
    Phys Rev E; 2021 Jul; 104(1-2):015106. PubMed ID: 34412331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics, interference effects, and multistability in a Lorenz-like system of a classical wave-particle entity in a periodic potential.
    Perks J; Valani RN
    Chaos; 2023 Mar; 33(3):033147. PubMed ID: 37003812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lorenz-like systems emerging from an integro-differential trajectory equation of a one-dimensional wave-particle entity.
    Valani RN
    Chaos; 2022 Feb; 32(2):023129. PubMed ID: 35232028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous transport of a classical wave-particle entity in a tilted potential.
    Valani RN
    Phys Rev E; 2022 Jan; 105(1):L012101. PubMed ID: 35193237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics, emergent statistics, and the mean-pilot-wave potential of walking droplets.
    Durey M; Milewski PA; Bush JWM
    Chaos; 2018 Sep; 28(9):096108. PubMed ID: 30278646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifurcations and chaos in a Lorenz-like pilot-wave system.
    Durey M
    Chaos; 2020 Oct; 30(10):103115. PubMed ID: 33138446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical pilot-wave dynamics: The free particle.
    Durey M; Bush JWM
    Chaos; 2021 Mar; 31(3):033136. PubMed ID: 33810713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed oscillations in classical pilot-wave dynamics.
    Durey M; Turton SE; Bush JWM
    Proc Math Phys Eng Sci; 2020 Jul; 476(2239):20190884. PubMed ID: 32831603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction.
    Labousse M; Perrard S; Couder Y; Fort E
    Phys Rev E; 2016 Oct; 94(4-1):042224. PubMed ID: 27841606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-wave dynamics of two identical, in-phase bouncing droplets.
    Valani RN; Slim AC
    Chaos; 2018 Sep; 28(9):096114. PubMed ID: 30278618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave-Based Turing Machine: Time Reversal and Information Erasing.
    Perrard S; Fort E; Couder Y
    Phys Rev Lett; 2016 Aug; 117(9):094502. PubMed ID: 27610859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organization into quantized eigenstates of a classical wave-driven particle.
    Perrard S; Labousse M; Miskin M; Fort E; Couder Y
    Nat Commun; 2014; 5():3219. PubMed ID: 24476755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and statistics of wave-particle interactions in a confined geometry.
    Gilet T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052917. PubMed ID: 25493868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bouncing droplets on a billiard table.
    Shirokoff D
    Chaos; 2013 Mar; 23(1):013115. PubMed ID: 23556952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of two walkers: wave-mediated energy and force.
    Borghesi C; Moukhtar J; Labousse M; Eddi A; Fort E; Couder Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063017. PubMed ID: 25615197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.
    Andersen A; Madsen J; Reichelt C; Rosenlund Ahl S; Lautrup B; Ellegaard C; Levinsen MT; Bohr T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013006. PubMed ID: 26274269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical phenomena: walking and orbiting droplets.
    Couder Y; Protière S; Fort E; Boudaoud A
    Nature; 2005 Sep; 437(7056):208. PubMed ID: 16148925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic quantum analogs.
    Bush JWM; Oza AU
    Rep Prog Phys; 2020 Dec; 84(1):. PubMed ID: 33065567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Hamiltonian features of a classical pilot-wave dynamics.
    Labousse M; Perrard S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022913. PubMed ID: 25215805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strings of droplets propelled by coherent waves.
    Filoux B; Hubert M; Vandewalle N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):041004. PubMed ID: 26565160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.