These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34412332)

  • 1. Topological charge-density method of identifying phase singularities in cardiac fibrillation.
    He YJ; Li QH; Zhou K; Jiang R; Jiang C; Pan JT; Zheng D; Zheng B; Zhang H
    Phys Rev E; 2021 Jul; 104(1-1):014213. PubMed ID: 34412332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological charge-density-vector method of identifying filaments of scroll waves.
    He YJ; Xia YX; Mei JT; Zhou K; Jiang C; Pan JT; Zheng D; Zheng B; Zhang H
    Phys Rev E; 2023 Jan; 107(1-1):014217. PubMed ID: 36797968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust approach for rotor mapping in cardiac tissue.
    Gurevich DR; Grigoriev RO
    Chaos; 2019 May; 29(5):053101. PubMed ID: 31154775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical vortex filaments during cardiac fibrillation.
    Christoph J; Chebbok M; Richter C; Schröder-Schetelig J; Bittihn P; Stein S; Uzelac I; Fenton FH; Hasenfuß G; Gilmour RF; Luther S
    Nature; 2018 Mar; 555(7698):667-672. PubMed ID: 29466325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of phase singularities on the spiral wave tail: reconsideration of capturing the excitable gap.
    Tomii N; Yamazaki M; Arafune T; Kamiya K; Nakazawa K; Honjo H; Shibata N; Sakuma I
    Am J Physiol Heart Circ Physiol; 2018 Aug; 315(2):H318-H326. PubMed ID: 29522372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal organization during cardiac fibrillation.
    Gray RA; Pertsov AM; Jalife J
    Nature; 1998 Mar; 392(6671):75-8. PubMed ID: 9510249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a computer algorithm for the detection of phase singularities and initial application to analyze simulations of atrial fibrillation.
    Zou R; Kneller J; Leon LJ; Nattel S
    Chaos; 2002 Sep; 12(3):764-778. PubMed ID: 12779605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of phase singularities in triangular meshes.
    Rantner LJ; Wieser L; Stühlinger MC; Hintringer F; Tilg B; Fischer G
    Methods Inf Med; 2007; 46(6):646-54. PubMed ID: 18066414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Termination of spiral waves during cardiac fibrillation via shock-induced phase resetting.
    Gray RA; Chattipakorn N
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4672-7. PubMed ID: 15769861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A statistical model of false negative and false positive detection of phase singularities.
    Jacquemet V
    Chaos; 2017 Oct; 27(10):103124. PubMed ID: 29092458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical mechanism of atrial fibrillation: A topological approach.
    Marcotte CD; Grigoriev RO
    Chaos; 2017 Sep; 27(9):093936. PubMed ID: 28964130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes.
    Bingen BO; Engels MC; Schalij MJ; Jangsangthong W; Neshati Z; Feola I; Ypey DL; Askar SF; Panfilov AV; Pijnappels DA; de Vries AA
    Cardiovasc Res; 2014 Oct; 104(1):194-205. PubMed ID: 25082848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Underlying Arrhythmia Mechanism in Persistent Atrial Fibrillation: Results From the STARLIGHT Study.
    Child N; Clayton RH; Roney CH; Laughner JI; Shuros A; Neuzil P; Petru J; Jackson T; Porter B; Bostock J; Niederer SA; Razavi RS; Rinaldi CA; Taggart P; Wright MJ; Gill J
    Circ Arrhythm Electrophysiol; 2018 Jun; 11(6):e005897. PubMed ID: 29858382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity.
    Bray MA; Wikswo JP
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1086-93. PubMed ID: 12374332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimentalist's approach to accurate localization of phase singularities during reentry.
    Iyer AN; Gray RA
    Ann Biomed Eng; 2001 Jan; 29(1):47-59. PubMed ID: 11219507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotors Detected by Phase Analysis of Filtered, Epicardial Atrial Fibrillation Electrograms Colocalize With Regions of Conduction Block.
    Podziemski P; Zeemering S; Kuklik P; van Hunnik A; Maesen B; Maessen J; Crijns HJ; Verheule S; Schotten U
    Circ Arrhythm Electrophysiol; 2018 Oct; 11(10):e005858. PubMed ID: 30354409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotors and the dynamics of cardiac fibrillation.
    Pandit SV; Jalife J
    Circ Res; 2013 Mar; 112(5):849-62. PubMed ID: 23449547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiral wave classification using normalized compression distance: Towards atrial tissue spatiotemporal electrophysiological behavior characterization.
    Alagoz C; Guez A; Cohen A; Bullinga JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4503-6. PubMed ID: 26737295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart.
    Chen J; Mandapati R; Berenfeld O; Skanes AC; Gray RA; Jalife J
    Cardiovasc Res; 2000 Nov; 48(2):220-32. PubMed ID: 11054469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase singularity detection through phase map interpolation: Theory, advantages and limitations.
    Jacquemet V
    Comput Biol Med; 2018 Nov; 102():381-389. PubMed ID: 30139504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.