These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 34412355)
21. Entropy and bifurcations in a chaotic laser. Collins P; Krauskopf B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056201. PubMed ID: 12513580 [TBL] [Abstract][Full Text] [Related]
22. Dynamics and transport in mean-field coupled, many degrees-of-freedom, area-preserving nontwist maps. Carbajal L; del-Castillo-Negrete D; Martinell JJ Chaos; 2012 Mar; 22(1):013137. PubMed ID: 22463013 [TBL] [Abstract][Full Text] [Related]
23. Infinities of stable periodic orbits in systems of coupled oscillators. Ashwin P; Rucklidge AM; Sturman R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):035201. PubMed ID: 12366172 [TBL] [Abstract][Full Text] [Related]
24. Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment. Pinto RD; Sartorelli JC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):342-7. PubMed ID: 11046271 [TBL] [Abstract][Full Text] [Related]
25. Quantum transport and spin dynamics on shearless tori. Kudo K; Monteiro TS Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):055203. PubMed ID: 18643121 [TBL] [Abstract][Full Text] [Related]
26. Attractor-repeller collision and the heterodimensional dynamics. Chigarev V; Kazakov A; Pikovsky A Chaos; 2023 Jun; 33(6):. PubMed ID: 37276553 [TBL] [Abstract][Full Text] [Related]
27. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method. Liu X; Hong L; Jiang J Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621 [TBL] [Abstract][Full Text] [Related]
28. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Saiki Y; Yamada M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096 [TBL] [Abstract][Full Text] [Related]
29. Ratchet current in nontwist Hamiltonian systems. Mugnaine M; Batista AM; Caldas IL; Szezech JD; Viana RL Chaos; 2020 Sep; 30(9):093141. PubMed ID: 33003918 [TBL] [Abstract][Full Text] [Related]
30. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model. Gritsun A Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051 [TBL] [Abstract][Full Text] [Related]
31. Controlled destruction of chaos in the multistable regime. Goswami BK Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016219. PubMed ID: 17677555 [TBL] [Abstract][Full Text] [Related]
32. Construction of an associative memory using unstable periodic orbits of a chaotic attractor. Wagner C; Stucki JW J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844 [TBL] [Abstract][Full Text] [Related]
33. Nontwist non-Hamiltonian systems. Altmann EG; Cristadoro G; Pazó D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056201. PubMed ID: 16803020 [TBL] [Abstract][Full Text] [Related]
34. Robust chaos in 3-D piecewise linear maps. Patra M; Banerjee S Chaos; 2018 Dec; 28(12):123101. PubMed ID: 30599530 [TBL] [Abstract][Full Text] [Related]
35. Archetypal oscillator for smooth and discontinuous dynamics. Cao Q; Wiercigroch M; Pavlovskaia EE; Grebogi C; Thompson JM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046218. PubMed ID: 17155164 [TBL] [Abstract][Full Text] [Related]
36. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results. Belykh VN; Barabash NV; Belykh IV Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821 [TBL] [Abstract][Full Text] [Related]
37. Control of chaotic spatiotemporal spiking by time-delay autosynchronization. Franceschini G; Bose S; Schöll E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5426-34. PubMed ID: 11970414 [TBL] [Abstract][Full Text] [Related]
38. Symmetry restoring bifurcations and quasiperiodic chaos induced by a new intermittency in a vibro-impact system. Yue Y; Miao P; Xie J; Celso G Chaos; 2016 Nov; 26(11):113121. PubMed ID: 27908017 [TBL] [Abstract][Full Text] [Related]
39. Characterizing chaos in systems subjected to parameter drift. Jánosi D; Tél T Phys Rev E; 2022 Jun; 105(6):L062202. PubMed ID: 35854578 [TBL] [Abstract][Full Text] [Related]
40. A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow. Narayanan S; Gunaratne GH; Hussain F Chaos; 2013 Sep; 23(3):033133. PubMed ID: 24089969 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]