These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34412355)

  • 41. Comment on "Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems".
    Zaks MA; Goldobin DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):018201; discussion 018202. PubMed ID: 20365510
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: Averages, transitions, and quasi-invariant sets.
    Maiocchi CC; Lucarini V; Gritsun A
    Chaos; 2022 Mar; 32(3):033129. PubMed ID: 35364825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Different classifications of UPOs in the parametrically different chaotic ISI series of a neural pacemaker.
    Ren W; Gu H; Jian Z; Lu Q; Yang M
    Neuroreport; 2001 Jul; 12(10):2121-4. PubMed ID: 11447319
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor.
    Mangiarotti S; Letellier C
    Chaos; 2021 Jan; 31(1):013129. PubMed ID: 33754770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transition among synchronized states mediated by attractor-repeller collision crisis.
    Hu B; Yang HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066213. PubMed ID: 12188821
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-dimensional paradigms for high-dimensional hetero-chaos.
    Saiki Y; Sanjuán MAF; Yorke JA
    Chaos; 2018 Oct; 28(10):103110. PubMed ID: 30384627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms for the development of unstable dimension variability and the breakdown of shadowing in coupled chaotic systems.
    Barreto E; So P
    Phys Rev Lett; 2000 Sep; 85(12):2490-3. PubMed ID: 10978089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency.
    Uenohara S; Mitsui T; Hirata Y; Morie T; Horio Y; Aihara K
    Chaos; 2013 Jun; 23(2):023110. PubMed ID: 23822475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fixed-point densities for a quasiperiodic kicked-oscillator map.
    Lowenstein JH
    Chaos; 1995 Sep; 5(3):566-577. PubMed ID: 12780212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using unstable periodic orbits to overcome distortion in chaotic signals.
    Carroll TL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5469-73. PubMed ID: 11970420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quasiperiodic perturbations of heteroclinic attractor networks.
    Delshams A; Guillamon A; Huguet G
    Chaos; 2018 Oct; 28(10):103111. PubMed ID: 30384643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applicability of 0-1 test for strange nonchaotic attractors.
    Gopal R; Venkatesan A; Lakshmanan M
    Chaos; 2013 Jun; 23(2):023123. PubMed ID: 23822488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Invariant manifolds and global bifurcations.
    Guckenheimer J; Krauskopf B; Osinga HM; Sandstede B
    Chaos; 2015 Sep; 25(9):097604. PubMed ID: 26428557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chaos control by electric current in an enzymatic reaction.
    Lekebusch A; Förster A; Schneider FW
    Int J Neural Syst; 1996 Sep; 7(4):393-7. PubMed ID: 8968829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A "saddle-node" bifurcation scenario for birth or destruction of a Smale-Williams solenoid.
    Isaeva OB; Kuznetsov SP; Sataev IR
    Chaos; 2012 Dec; 22(4):043111. PubMed ID: 23278046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.