These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 34412369)
1. Entanglement distribution in the quantum symmetric simple exclusion process. Bernard D; Piroli L Phys Rev E; 2021 Jul; 104(1-1):014146. PubMed ID: 34412369 [TBL] [Abstract][Full Text] [Related]
2. Phase transitions in the distribution of bipartite entanglement of a random pure state. Nadal C; Majumdar SN; Vergassola M Phys Rev Lett; 2010 Mar; 104(11):110501. PubMed ID: 20366459 [TBL] [Abstract][Full Text] [Related]
3. Open Quantum Symmetric Simple Exclusion Process. Bernard D; Jin T Phys Rev Lett; 2019 Aug; 123(8):080601. PubMed ID: 31491217 [TBL] [Abstract][Full Text] [Related]
4. Entanglement transitions induced by large deviations. Bhosale UT Phys Rev E; 2017 Dec; 96(6-1):062149. PubMed ID: 29347425 [TBL] [Abstract][Full Text] [Related]
5. Path-integral Monte Carlo method for Rényi entanglement entropies. Herdman CM; Inglis S; Roy PN; Melko RG; Del Maestro A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013308. PubMed ID: 25122411 [TBL] [Abstract][Full Text] [Related]
6. Entanglement of interacting fermions in quantum Monte Carlo calculations. Grover T Phys Rev Lett; 2013 Sep; 111(13):130402. PubMed ID: 24116750 [TBL] [Abstract][Full Text] [Related]
7. Entanglement Entropy of Free Fermions with a Random Matrix as a One-Body Hamiltonian. Pastur L; Slavin V Entropy (Basel); 2024 Jun; 26(7):. PubMed ID: 39056926 [TBL] [Abstract][Full Text] [Related]
8. Renyi entanglement entropy of interacting fermions calculated using the continuous-time quantum Monte Carlo method. Wang L; Troyer M Phys Rev Lett; 2014 Sep; 113(11):110401. PubMed ID: 25259962 [TBL] [Abstract][Full Text] [Related]
9. Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality. Alba V Phys Rev E; 2017 Jun; 95(6-1):062132. PubMed ID: 28709283 [TBL] [Abstract][Full Text] [Related]
10. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations. Inglis S; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013306. PubMed ID: 23410459 [TBL] [Abstract][Full Text] [Related]
11. Entanglement entropy in Fermi gases and Anderson's orthogonality catastrophe. Ossipov A Phys Rev Lett; 2014 Sep; 113(13):130402. PubMed ID: 25302872 [TBL] [Abstract][Full Text] [Related]
12. Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions. Drut JE; Porter WJ Phys Rev Lett; 2015 Feb; 114(5):050402. PubMed ID: 25699423 [TBL] [Abstract][Full Text] [Related]
13. Disorder Operator and Rényi Entanglement Entropy of Symmetric Mass Generation. Liu ZH; Da Liao Y; Pan G; Song M; Zhao J; Jiang W; Jian CM; You YZ; Assaad FF; Meng ZY; Xu C Phys Rev Lett; 2024 Apr; 132(15):156503. PubMed ID: 38683001 [TBL] [Abstract][Full Text] [Related]
14. Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. Hastings MB; González I; Kallin AB; Melko RG Phys Rev Lett; 2010 Apr; 104(15):157201. PubMed ID: 20482013 [TBL] [Abstract][Full Text] [Related]
15. Scaling of Entanglement Entropy at Deconfined Quantum Criticality. Zhao J; Wang YC; Yan Z; Cheng M; Meng ZY Phys Rev Lett; 2022 Jan; 128(1):010601. PubMed ID: 35061478 [TBL] [Abstract][Full Text] [Related]
16. Renyi entropy of chaotic eigenstates. Lu TC; Grover T Phys Rev E; 2019 Mar; 99(3-1):032111. PubMed ID: 30999409 [TBL] [Abstract][Full Text] [Related]
17. A path integral ground state replica trick approach for the computation of entanglement entropy of dipolar linear rotors. Sahoo T; Iouchtchenko D; Herdman CM; Roy PN J Chem Phys; 2020 May; 152(18):184113. PubMed ID: 32414240 [TBL] [Abstract][Full Text] [Related]
18. Generalized Entanglement Entropies of Quantum Designs. Liu ZW; Lloyd S; Zhu EY; Zhu H Phys Rev Lett; 2018 Mar; 120(13):130502. PubMed ID: 29694167 [TBL] [Abstract][Full Text] [Related]
19. Universal Features of Entanglement Entropy in the Honeycomb Hubbard Model. D'Emidio J; Orús R; Laflorencie N; de Juan F Phys Rev Lett; 2024 Feb; 132(7):076502. PubMed ID: 38427869 [TBL] [Abstract][Full Text] [Related]
20. Entanglement at a two-dimensional quantum critical point: a numerical linked-cluster expansion study. Kallin AB; Hyatt K; Singh RR; Melko RG Phys Rev Lett; 2013 Mar; 110(13):135702. PubMed ID: 23581341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]