These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Raffa RB Peptides; 1988; 9(4):915-22. PubMed ID: 3067224 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory influences of mammalian FMRFamide (Phe-Met-Arg-Phe-amide)-related peptides on nociception and morphine- and stress-induced analgesia in mice. Kavaliers M Neurosci Lett; 1990 Jul; 115(2-3):307-12. PubMed ID: 2234508 [TBL] [Abstract][Full Text] [Related]
7. Supraspinal antinociception produced by [D-Met2]-FMRFamide in mice. Raffa RB; Connelly CD Neuropeptides; 1992 Jul; 22(3):195-203. PubMed ID: 1331846 [TBL] [Abstract][Full Text] [Related]
8. Supraspinal administration of [D-Met2]FMRFamide produces a naloxone-sensitive increase in heart rate in unrestrained spontaneously hypertensive rats. Raffa RB; Addo MF; Gill A Neuropeptides; 1992 Apr; 21(4):201-5. PubMed ID: 1355596 [TBL] [Abstract][Full Text] [Related]
10. Calcium channel blockers inhibit the antagonistic effects of Phe-Met-Arg-Phe-amide (FMRFamide) on morphine- and stress-induced analgesia in mice. Kavaliers M Brain Res; 1987 Jul; 415(2):380-4. PubMed ID: 2440527 [TBL] [Abstract][Full Text] [Related]
11. Central effects of neuropeptide FF on intestinal motility in naive and morphine-dependent rats. Gelot A; Fioramonti J; Zajac JM; Bueno L Neuropeptides; 1995 Nov; 29(5):245-50. PubMed ID: 8587659 [TBL] [Abstract][Full Text] [Related]
12. Antinociceptive effects of intrathecally administered F8Famide and FMRFamide in the rat. Gouardères C; Sutak M; Zajac JM; Jhamandas K Eur J Pharmacol; 1993 Jun; 237(1):73-81. PubMed ID: 8102975 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory influences of FMRFamide on morphine- and deprivation-induced feeding. Kavaliers M; Hirst M; Mathers A Neuroendocrinology; 1985 Jun; 40(6):533-5. PubMed ID: 4010892 [TBL] [Abstract][Full Text] [Related]
14. Reversal of the effects of centrally-administered morphine on colonic motility in dogs by the benzodiazepine receptor antagonist RO 15-1788. Fioramonti J; Fargeas MJ; Buéno L Life Sci; 1987 Sep; 41(12):1449-55. PubMed ID: 3041141 [TBL] [Abstract][Full Text] [Related]
15. Morphine tolerance and dependence in the rat intestine in vivo. Williams CL; Bihm CC; Rosenfeld GC; Burks TF J Pharmacol Exp Ther; 1997 Feb; 280(2):656-63. PubMed ID: 9023276 [TBL] [Abstract][Full Text] [Related]
16. Different targets for i.v. vs. i.c.v. administered morphine for its effect on colonic motility in dogs. Fioramonti J; Fargeas MJ; Bueno L Eur J Pharmacol; 1985 Oct; 117(1):115-20. PubMed ID: 4085540 [TBL] [Abstract][Full Text] [Related]
17. IgG from antiserum against endogenous mammalian FMRF-NH2-related peptides augments morphine- and stress-induced analgesia in mice. Kavaliers M; Yang HY Peptides; 1989; 10(4):741-5. PubMed ID: 2587416 [TBL] [Abstract][Full Text] [Related]
18. [D-Met2]-FMRFamide (DMFa): production of naloxone-sensitive antinociception in mouse tail-flick test. Raffa RB; Connelly CD NIDA Res Monogr; 1990; 105():391-2. PubMed ID: 1876049 [TBL] [Abstract][Full Text] [Related]