These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34413171)

  • 1. MIC-Drop: A platform for large-scale in vivo CRISPR screens.
    Parvez S; Herdman C; Beerens M; Chakraborti K; Harmer ZP; Yeh JJ; MacRae CA; Yost HJ; Peterson RT
    Science; 2021 Sep; 373(6559):1146-1151. PubMed ID: 34413171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale F0 CRISPR screens in vivo using MIC-Drop.
    Parvez S; Brandt ZJ; Peterson RT
    Nat Protoc; 2023 Jun; 18(6):1841-1865. PubMed ID: 37069311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance.
    Bowden AR; Morales-Juarez DA; Sczaniecka-Clift M; Agudo MM; Lukashchuk N; Thomas JC; Jackson SP
    Elife; 2020 May; 9():. PubMed ID: 32441252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens.
    Wang T; Lander ES; Sabatini DM
    Cold Spring Harb Protoc; 2016 Mar; 2016(3):pdb.top086892. PubMed ID: 26933254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid reverse genetic screening using CRISPR in zebrafish.
    Shah AN; Davey CF; Whitebirch AC; Miller AC; Moens CB
    Nat Methods; 2015 Jun; 12(6):535-40. PubMed ID: 25867848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish.
    Ye C; Chen Z; Liu Z; Wang F; He X
    J Genet Genomics; 2020 Feb; 47(2):85-91. PubMed ID: 32173285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling.
    Liu J; Zhou Y; Qi X; Chen J; Chen W; Qiu G; Wu Z; Wu N
    Hum Genet; 2017 Jan; 136(1):1-12. PubMed ID: 27807677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. caRpools: an R package for exploratory data analysis and documentation of pooled CRISPR/Cas9 screens.
    Winter J; Breinig M; Heigwer F; Brügemann D; Leible S; Pelz O; Zhan T; Boutros M
    Bioinformatics; 2016 Feb; 32(4):632-4. PubMed ID: 26508755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish.
    Klatt Shaw D; Mokalled MH
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 33742663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 and genetic screens in malaria parasites: small genomes, big impact.
    Ishizaki T; Hernandez S; Paoletta MS; Sanderson T; Bushell ESC
    Biochem Soc Trans; 2022 Jun; 50(3):1069-1079. PubMed ID: 35621119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput functional genomics using CRISPR-Cas9.
    Shalem O; Sanjana NE; Zhang F
    Nat Rev Genet; 2015 May; 16(5):299-311. PubMed ID: 25854182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key elements for designing and performing a CRISPR/Cas9-based genetic screen.
    Shang W; Wang F; Fan G; Wang H
    J Genet Genomics; 2017 Sep; 44(9):439-449. PubMed ID: 28967615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-Generation Sequencing of Genome-Wide CRISPR Screens.
    Yau EH; Rana TM
    Methods Mol Biol; 2018; 1712():203-216. PubMed ID: 29224076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio.
    Sorlien EL; Witucki MA; Ogas J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.