BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34413311)

  • 21. An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae.
    Teh MY; Ooi KH; Danny Teo SX; Bin Mansoor ME; Shaun Lim WZ; Tan MH
    ACS Synth Biol; 2019 Apr; 8(4):708-723. PubMed ID: 30865830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material.
    Mangayil R; Rajala S; Pammo A; Sarlin E; Luo J; Santala V; Karp M; Tuukkanen S
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19048-19056. PubMed ID: 28520408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioconversion of underutilized brewing by-products into bacterial cellulose by a newly isolated Komagataeibacter rhaeticus strain: A preliminary evaluation of the bioprocess environmental impact.
    Tsouko E; Pilafidis S; Dimopoulou M; Kourmentza K; Sarris D
    Bioresour Technol; 2023 Nov; 387():129667. PubMed ID: 37572886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties.
    Gilbert C; Ellis T
    ACS Synth Biol; 2019 Jan; 8(1):1-15. PubMed ID: 30576101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea.
    Li J; Chen G; Zhang R; Wu H; Zeng W; Liang Z
    Biotechnol Appl Biochem; 2019 Jan; 66(1):108-118. PubMed ID: 30359481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
    Gopu G; Govindan S
    Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free-standing three-dimensional hollow bacterial cellulose structures with controlled geometry via patterned superhydrophobic-hydrophilic surfaces.
    Laromaine A; Tronser T; Pini I; Parets S; Levkin PA; Roig A
    Soft Matter; 2018 May; 14(19):3955-3962. PubMed ID: 29736513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intelligent optofluidic analysis for ultrafast single bacterium profiling of cellulose production and morphology.
    Yu J; Sun G; Lin NW; Vadanan SV; Lim S; Chen CH
    Lab Chip; 2020 Feb; 20(3):626-633. PubMed ID: 31919490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture.
    Bi JC; Liu SX; Li CF; Li J; Liu LX; Deng J; Yang YC
    J Appl Microbiol; 2014 Nov; 117(5):1305-11. PubMed ID: 25098972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production.
    Zhang H; Ye C; Xu N; Chen C; Chen X; Yuan F; Xu Y; Yang J; Sun D
    Sci Rep; 2017 Aug; 7(1):7911. PubMed ID: 28801647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of bacterial cellulose by
    Kolesovs S; Ruklisha M; Semjonovs P
    3 Biotech; 2023 Mar; 13(3):105. PubMed ID: 36875957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation.
    Wang Y; Liu Y; Li J; Chen Y; Liu S; Zhong C
    Curr Opin Chem Biol; 2022 Oct; 70():102188. PubMed ID: 35970133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites.
    Luz EPCG; Chaves PHS; Vieira LAP; Ribeiro SF; Borges MF; Andrade FK; Muniz CR; Infantes-Molina A; Rodríguez-Castellón E; Rosa MF; Vieira RS
    Carbohydr Polym; 2020 Jun; 237():116174. PubMed ID: 32241452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Bacterial Cellulose by Synthetic Biology.
    Singh A; Walker KT; Ledesma-Amaro R; Ellis T
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33276459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen
    Kaczmarek M; Jędrzejczak-Krzepkowska M; Ludwicka K
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol.
    van Zyl EM; Kennedy MA; Nason W; Fenlon SJ; Young EM; Smith LJ; Bhatia SR; Coburn JM
    Biomater Adv; 2023 May; 148():213345. PubMed ID: 36889229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-pigmenting textiles grown from cellulose-producing bacteria with engineered tyrosinase expression.
    Walker KT; Li IS; Keane J; Goosens VJ; Song W; Lee KY; Ellis T
    Nat Biotechnol; 2024 Apr; ():. PubMed ID: 38565971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic Understanding of Recent Developments in Bacterial Cellulose Biosynthesis at Genetic, Bioprocess and Product Levels.
    Buldum G; Mantalaris A
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose.
    Wang X; Guo C; Hao W; Ullah N; Chen L; Li Z; Feng X
    Int J Biol Macromol; 2018 Oct; 118(Pt A):722-730. PubMed ID: 29944938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.